Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM

Nội dung Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM Bản PDF - Nội dung bài viết Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM Sytu xin trân trọng giới thiệu đến quý thầy cô và các em học sinh lớp 8, đề thi chọn học sinh giỏi lần thứ 2 môn Toán lớp 8 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo thành phố Thủ Đức, thành phố Hồ Chí Minh. Kỳ thi sẽ diễn ra vào ngày 18 tháng 03 năm 2023. Trích dẫn từ Đề học sinh giỏi lần 2 Toán lớp 8 năm 2022 - 2023 phòng GD&ĐT Thủ Đức - TP HCM: Cho tam giác ABC có ba góc nhọn (AB < AC) và ba đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh: Tam giác BFC đồng dạng với tam giác BDA và góc BFD = góc ACB. b) Tia EF cắt đường thẳng BC tại K. Chứng minh: CD.FK = CK.FD. c) Gọi M là trung điểm của BC. Vẽ đường thẳng qua M vuông góc với HM, cắt AB, AD, AC tại P, Q, R. Chứng minh: PQ = QR. Hai địa điểm A và B cách nhau 200 km. Xe ô tô và xe máy khởi hành cùng lúc từ A và B đi ngược chiều. Mỗi xe đi với vận tốc khác nhau và gặp nhau tại điểm C cách A 120 km. Nếu xe ô tô khởi hành sau một giờ so với xe máy, hỏi chúng sẽ gặp nhau tại điểm D cách C bao nhiêu km? Biết vận tốc của xe ô tô lớn hơn 20 km/h so với xe máy. Cho tứ giác ABCD có các trung điểm M, N, P, Q lần lượt của các cạnh AB, BC, CD, DA. Điểm I nằm trong tứ giác ABCD. Tính diện tích tứ giác ABCD biết S(AIQM) = 32 (cm2), S(BMIN) = 50 (cm2) và S(DPIQ) = 20 (cm2). Nội dung đề thi trên cung cấp cho các em học sinh những bài toán thú vị và bổ ích, giúp họ rèn luyện kỹ năng giải quyết vấn đề, logic suy luận và tính toán trong môn học Toán. Chúc các em thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2017 - 2018 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề học sinh giỏi Toán 8 năm 2017 – 2018 phòng GD&ĐT Kim Thành – Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi Toán 8 năm 2017 – 2018 phòng GD&ĐT Kim Thành – Hải Dương : + Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD. Chứng minh: a) Tứ giác BEDF là hình bình hành. b) CH.CD = CB.CK. c) AB.AH + AD.AK = AC2. + Cho biểu thức M. a) Tìm điều kiện của x để M xác định và rút gọn M. b) Tìm tất các giá trị của x để M > 0. + Xác định một đa thức bậc ba f(x) không có hạng tử tự do sao cho: f(x) – f(x – 1) = x2.
Đề HSG Toán 8 cấp thành phố năm 2017 - 2018 phòng GDĐT TP Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề HSG Toán 8 cấp thành phố năm 2017 – 2018 phòng GD&ĐT TP Bắc Giang; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề HSG Toán 8 cấp thành phố năm 2017 – 2018 phòng GD&ĐT TP Bắc Giang : + Cho hình vuông ABCD có 2 đường chéo AC và BD cắt nhau tại O. Trên cạnh AB lấy M (0 < MB < MA) và trên cạnh BC lấy N sao cho 0 < MON < 90. Gọi E là giao điểm của AN với DC, gọi K là giao điểm của ON với BE. 1. Chứng minh tam giác MON vuông cân. 2. Chứng minh MN song song với BE. 3. Chứng minh CK vuông góc với BE. + Cho x, y là số hữu tỷ khác 1 thỏa mãn. Chứng minh M = x2 + y2 – xy là bình phương của một số hữu tỷ. + Tìm tất cả các cặp số nguyên (x; y) thoả mãn.
Đề HSG Toán 8 năm 2017 - 2018 phòng GDĐT Duy Xuyên - Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Duy Xuyên – Quảng Nam; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Duy Xuyên – Quảng Nam : + Một vật thể chuyển động từ A đến B theo cách sau: đi được 4 m thì dừng lại 1 giây, rồi đi tiếp 8m dừng lại 2 giây, rồi đi tiếp 12m dừng lại 3 giây, … Cứ như vậy đi từ A đến B kể cả dừng hết tất cả 155 giây. Biết rằng khi đi vật thể luôn có vận tốc 2 m/giây. Tính khoảng cách từ A đến B. + Cho tam giác ABC vuông tại A, phân giác BD. Gọi P, Q, R lần lượt là trung điểm của BD, BC, DC. a) Chứng minh APQR là hình thang cân. b) Biết AB = 6cm, AC = 8cm Tính độ dài của AR. + Cho hình bình hành ABCD. Một đường thẳng qua B cắt cạnh CD tại M, cắt đường chéo AC tại N và cắt đường thẳng AD tại K. Chứng minh.
Đề giao lưu học sinh giỏi Toán 8 năm 2017 - 2018 phòng GDĐT thành phố Thái Nguyên
Đề giao lưu học sinh giỏi Toán 8 năm 2017 – 2018 phòng GD&ĐT thành phố Thái Nguyên