Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra cuối học kì 1 (HK1) lớp 10 môn Toán năm 2023 2024 sở GD ĐT Bắc Giang

Nội dung Đề kiểm tra cuối học kì 1 (HK1) lớp 10 môn Toán năm 2023 2024 sở GD ĐT Bắc Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kì 1 môn Toán lớp 10 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 28 tháng 12 năm 2023; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận mã đề 101 102 103 104. Trích dẫn Đề kiểm tra cuối học kì 1 Toán lớp 10 năm 2023 – 2024 sở GD&ĐT Bắc Giang : + Trên bản đồ địa lý người ta thường gọi tứ giác với 4 đỉnh lần lượt là các thành phố Hà Tiên, Châu Đốc, Long Xuyên, Rạch Giá là tứ giác Long Xuyên. Dựa vào các khoảng cách đã cho trên hình vẽ, ta tính được khoảng cách giữa Châu Đốc và Rạch Giá gần đúng bằng (làm tròn đến hàng đơn vị). + Cho tam giác ABC có AB cm 6 AC cm 8 và 0 A 60. Gọi M là trung điểm của BC. a) Tính độ dài cạnh BC của tam giác ABC. b) Qua B kẻ một đường thẳng vuông góc với AM, cắt AC tại N. Tính tỉ số AN AC. + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 12 gam hương liệu hòa tan, 9 lít nước và 315 gam đường để pha chế hai loại nước A và B. Để pha chế 1 lít nước loại A cần 45 gam đường, 1 lít nước và 0,5gam hương liệu. Để pha chế 1 lít nước loại B cần 15gam đường, 1 lít nước và 2 gam hương liệu. Mỗi lít nước loại A nhận được 60 điểm thưởng, mỗi lít nước loại B nhận được 80 điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước mỗi loại để đội chơi được số điểm thưởng là lớn nhất? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường Diên Hồng - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THCS&THPT Diên Hồng, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THCS&THPT Diên Hồng – TP HCM : + Xác định Parabol (P): y = ax2 + bx + c có đồ thị hàm số như hình vẽ sau. + Giải các phương trình và hệ phương trình sau. + Tìm tất cả các giá trị thực của tham số m để phương trình vô nghiệm.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Phạm Văn Sáng - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Phạm Văn Sáng, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Phạm Văn Sáng – TP HCM : + Xác định parabole (P): y = ax2 + 6x + c qua C(2;5) và có trục đối xứng x = 1. + Trong mặt phẳng tọa độ Oxy, cho ∆ABC biếtA(-3;1), B (3;3), C(4;0). a) Chứng minh ∆ABC vuông. b) Tìm tọa độ điểm D sao cho DBAC là hình bình hành. c) Gọi H là hình chiếu vuông góc của B lên đường thẳng AC. Tìm tọa độ điểm H. + Với những giá trị nào của m thì phương trình x2 + 2(m – 4)x + m2 – 2 = 0 có hai nghiệm x1, x2 thỏa 3x1x2 + x1^2 + x2^2 = 18.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Phước Kiển - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Phước Kiển, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Phước Kiển – TP HCM : + Trong mặt phẳng Oxy, cho ba điểm A(-1;-1), B(3;1), C(6;0). a) Chứng minh rằng ba điểm A, B, C lập thành một tam giác. b) Tìm toạ độ điểm E thuộc Oy sao cho tam giác ABE vuông tại B. c) Tính góc 𝐴𝐵𝐶 và chu vi của tam giác ABC. + Xác định hàm số (P): y = -x2 + bx + c, biết đồ thị của hàm số (P) đi qua điểm A(-2;0) và có trục đối xứng là x = -5. + Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = 2×2 – 4x + 2.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Phú Hòa - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Phú Hòa, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Phú Hòa – TP HCM : + Một trường THPT có tổng số học sinh khối 10, khối 11 và khối 12 là 1378 học sinh. Tổng số học sinh khối 10 và khối 11 bằng 38/15 số học sinh khối 12. Biết rằng 3 lần số học sinh khối 12 nhiều hơn 2 lần số học sinh khối 10 là 106 học sinh. Hỏi mỗi khối có bao nhiêu học sinh? + Tìm tập xác định của hàm số. + Cho tam giác ABC có AB = 7a, BC = 8a, AC = 9a. a) Tính diện tích tam giác ABC. b) Tính bán kính đường tròn ngoại tiếp tam giác ABC và cos ACB.