Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau nhờ kĩ thuật dựng song song giữa đường thẳng và mặt phẳng

Tài liệu gồm 13 trang, được biên soạn bởi tác giả Hoàng Xuân Bính (giáo viên Toán trường THPT chuyên Biên Hòa, Hà Nam), hướng dẫn phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau nhờ kĩ thuật dựng song song giữa đường thẳng và mặt phẳng. Trong bài toán thuộc chủ đề khoảng cách thì ta thấy thường xuất hiện bài toán tính khoảng cách giữa hai đường thẳng chéo nhau. Do đó, mình viết chuyên đề này để giúp các thầy cô và các em học sinh có một hướng tiếp cận khi giải quyết bài toán này. I. Kiến thức cơ bản cần nhớ II. Nội dung chuyên đề Để giúp học sinh và các thầy cô có một cách tiếp cận về loại bài tập này, tôi xin trình bày: Phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau nhờ kĩ thuật dựng song song giữa đường với mặt. a) Phương pháp: Để tính khoảng cách giữa hai đường thẳng chéo nhau trong chuyên đề này, chúng ta sử dụng phương pháp đường song song với mặt: Cho a, b là hai đường thẳng chéo nhau thì ta luôn có: d(a;b) = d(a;(P)) với b ⊂ P và a // (P). b) Các tính chất hình học phẳng thường được sử dụng: – Loại 1: Khai thác tính chất hình bình hành (hoặc trong các hình hình thoi, hình chữ nhật, hình vuông): Trong một hình bình hành thì hai cặp cạnh đối diện luôn song song với nhau. – Loại 2: Khai thác tính chất đường trung bình của tam giác. Chú ý: + Để khai thác tính chất đường trung bình trong tam giác, ta chú ý tới các yếu tố trung điểm có sẵn trong đề bài từ đó xây dựng thêm một trung điểm mới để thiết lập đường trung bình từ đó xác định được yếu tố song song mà ta sẽ chuyển đổi được khoảng cách giữa đường với đường về đường với mặt. + Với bài toán có liên quan tới bài toán về hình hộp hoặc lăng trụ tam giác thì ta chú ý một tính chất quen thuộc của lăng trụ là: tâm của các mặt bên cũng chính là trung điểm của hai đường chéo của mặt bên đó. III. Bài tập minh họa Trong chuyên đề này, tôi xin chia các bài toán áp dụng được phương pháp này thành 2 dạng: + Dạng 1. Các bài toán tính khoảng cách giữa hai đường thẳng chéo nhau trong các bài toán về hình chóp. + Dạng 2: Các bài toán tính khoảng cách giữa hai đường thẳng chéo nhau trong các bài toán về lăng trụ. IV. Bài tập tự luyện

Nguồn: toanmath.com

Đọc Sách

29 bài toán hình lăng trụ xiên - Trần Đình Cư
Tuyển tập gồm 18 trang tuyển tập 29 bài toán hình lăng trụ xiên của tác giả Trần Đình Cư, mỗi bài toán đều có lời giải chi tiết. Trích dẫn tài liệu : + Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình chữ nhật, AB = a, AD = b, cạnh bên AA’ hợp với mặt đáy (ABCD) một góc bằng 60 độ, mặt bên AA’D’D là hình thoi có góc A’AD nhọn và nằm trong mặt phẳng vuông góc với đáy (ABCD). a. Tính thể tích của khối tứ diện ACDD’ b. Xác định và tính độ dài đoạn vuông góc chung giữa AA’ và CD [ads] + Cho hình lăng trụ ABC.A’B’C’, đáy ABC có AC = a√3, BC = 3a, ACB = 30 độ. Cạnh bên hợp với mặt phẳng đáy góc 60 độ và mặt phẳng (A’BC) vuông góc với mặt phẳng (ABC). Điểm H trên cạnh BC sao cho HC = 3BH và mặt phẳng (A’AH) vuông góc với mặt phẳng (ABC). Tính thể tích khối lăng trụ ABC.A’B’C’ và khoảng cách từ B đến mặt phẳng (A’AC). + Cho hình lăng trụ ABC.A’B’C’ có độ dài tất cả các cạnh bằng a và hình chiếu của đỉnh C trên mặt phẳng (ABB’A’) là tâm của hình bình hành ABB’A’. Tính thể tích của khối lăng trụ.
Tính khoảng cách trong hình học không gian bằng phương pháp thể tích - Nguyễn Tuấn Anh
Tài liệu gồm 14 trang hướng dẫn giải bài toán tính khoảng cách trong hình học không gian bằng phương pháp thể tích và các ví dụ minh họa. Câu khoảng cách của hình học không gian (thuần túy) trong đề thi THPTQG dù không là một câu khó nhưng để có thể nhìn được chân đường cao hoặc đoạn vuông góc chung đối với học sinh trung bình yếu không phải dễ. Bài viết mong muốn giúp các em tự tin hơn với câu này, dù là điểm 8,9,10 là khó lấy, nhưng điểm 7 với các em thì hoàn toàn có thể. (Bài viết có tham khảo nhiều nguồn khác nhau nên khó lòng trích dẫn các nguồn ở đây xin chân thành cám ơn các tác giả, các nguồn tài liệu đã tham khảo để viết bài này). [ads] Ý tưởng: Ta có một hình chóp: S.ABC việc tính thể tích của khối chóp này được thực hiện rất dễ dàng (đường cao hạ từ S xuống mặt đáy (ABC)), ta cần tính khoảng cách từ C đến (SAB) tức tìm chiều cao CE. Vì thể của hình chóp là không thay đổi dù ta có xem điểm nào đó (S, A, B, C) là đỉnh vì vậy nếu ta biết diện tích ∆SAB thì khoảng cách cần tìm đó CE = 3V/SΔSAB. Có thể gọi là dùng thể tích 2 lần. Chú ý: Khi áp dụng phương pháp này ta cần nhớ công thức tính diện tích của tam giác: SΔSAB = √p,(p – a)(p – b)(p – c) với p là nửa chu vi và a, b, c là kích thước của 3 cạnh.
Tuyển tập các bài toán hình học không gian - Châu Ngọc Hùng
Tuyển tập các bài toán hình học không gian được phân dạng theo khối hình, tài liệu gồm 75 trang do thầy Châu Ngọc Hùng biên soạn. Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy ABCD là hình thoi; hai đường chéo AC = 2√3a, BD = 2a và cắt nhau tại O; hai mặt phẳng (S AC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ điểm O đến mặt phẳng (S AB) bằng a = √3/4, tính thể tích khối chóp S.ABCD theo a. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông và tam giác SAB là tam giác cân tại đỉnh S. Góc giữa đường thẳng S A và mặt phẳng đáy bằng 45 độ, góc giữa mặt phẳng (SAB) và mặt phẳng đáy bằng 60 độ. Tính thể tích khối chóp S.ABCD, biết rằng khoảng cách giữa hai đường thẳng CD và SA bằng a√6. + Cho lăng trụ tam giác ABC.A1B1C1 có tất cả các cạnh bằng a, góc tạo bởi cạnh bên và mặt đáy bằng 30 độ. Hình chiếu vuông góc H của đỉnh A trên mặt phẳng (A1B1C1) thuộc đường thẳng B1C1. Tính thể tích khối lăng trụ ABC.A1B1C1 và tính khoảng cách giữa hai đường thẳng AA1 và B1C1 theo a.
Chuyên đề hình học không gian 2016 - Trần Quốc Nghĩa
Tài liệu chuyên đề hình học không gian 2016 do thầy Trần Quốc Nghĩa biên soạn gồm 2 phần: Phần 1: Tổng hợp các kiến thức hình học không gian, bao gồm: Các phương pháp chứng minh cơ bản trong hình học không gian 1. Chứng minh đường thẳng d song song mp(α) (d ⊄ (α)) 2. Chứng minh mp(α) song song với mp(β) 3. Chứng minh hai đường thẳng song song 4. Chứng minh đường thẳng d vuông góc với mặt phẳng (α) 5. Chứng minh hai đường thẳng d và d’ vuông góc 6. Chứng minh hai mặt phẳng (α) và (β) vuông góc [ads] Các công thức tính thường được sử dụng Cách vẽ và xác định các yếu tố góc, khoảng cách trong các khối đa diện thường gặp 1. Hình chóp S.ABCD, có đáy ABCD là hình chữ nhật (hoặc hình vuông) và SA vuông góc với đáy 2. Hình chóp S.ABCD, có đáy ABCD là hình thang vuông tại A và B và SA vuông góc với đáy 3. Hình chóp tứ giác đều S.ABCD 4. Hình chóp S.ABC, SA vuông góc với đáy 5. Hình chóp tam giác đều S.ABC 6. Hình chóp S.ABC có một mặt bên (SAB) vuông góc với đáy (ABCD) 7. Hình chóp S.ABCD có một mặt bên (SAB) vuông góc với đáy (ABCD) và ABCD là hình chữ nhật hoặc hình vuông 8. Hình lăng trụ 9. Mặt cầu ngoại tiếp hình chóp Phần 2: Tổng hợp 150 bài toán hình học không gian trong các đề thi thử 2016.