Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử môn Toán 2018 THPT Quốc gia đợt 2 - HK1 trường chuyên Hùng Vương - Bình Dương

Đề thi thử môn Toán 2018 THPT Quốc gia đợt 2 – HK1 trường chuyên Hùng Vương – Bình Dương gồm 50 câu hỏi trác nghiệm, thời gian làm bài 90 phút, nội dung đề thi có cả nội dung chương trình Toán 11 theo kế hoạch thi THPT Quốc gia năm nay, đề thi có đáp án . Trích dẫn đề thi : + Cường độ của ánh sáng I khi đi qua môi trường khác với không khí, chẳng hạn như sương mù hay nước … sẽ giảm dần tùy theo độ dày của môi trường và một hằng số μ gọi là khả năng hấp thu ánh sáng tùy theo bản chất môi trường mà ánh sáng truyền đi và được tính theo công thức I = I0.e^(-μx) với x là độ dày của môi trường đó và tính bằng mét, I0 là cường độ ánh sáng tại thời điểm trên mặt nước. Biết rằng nước hồ trong suốt có μ = 1,4. Hỏi cường độ ánh sáng giảm đi bao nhiêu lần khi truyền trong hồ đó từ độ sâu 3m xuống đến độ sâu 30m ( chọn giá trị gần đúng với đáp số nhất). A. e^30 lần B. 2,6081.10^16 lần C. e^27 lần D. 2,6081.10^(-16) lần [ads] + Hai bạn Hùng và Vương cùng tham gia một kỳ thi thử trong đó có hai môn thi trắc nghiệm là Toán và Tiếng Anh. Đề thi của mỗi môn gồm 6 mã đề khác nhau và các môn khác nhau thì mã đề cũng khác nhau. Đề thi được sắp xếp và phát cho học sinh một cách ngẫu nhiên. Tính xác suất để trong hai môn Toán và Tiếng Anh thì hai bạn Hùng và Vương có chung đúng một mã đề thi. A. 5/36   B. 5/9 C. 5/72   D. 5/18 + Tìm khẳng định sai trong các khẳng định sau đây: A. Nếu hai mặt phẳng song song cùng cắt mặt phẳng thứ ba thì hai giao tuyến tạo thành song song với nhau. B. Ba mặt phẳng đôi một song song chắn trên hai đường thẳng chéo nhau những đoạn thẳng tương ứng tỉ lệ. C. Nếu mặt phẳng (P) song song với mặt phẳng (Q) thì mọi đường thẳng nằm trên mặt phẳng (P) đều song song với mặt phẳng (Q). D. Nếu mặt phẳng (P) có chứa hai đường thẳng phân biệt và hai đường thẳng đó cùng song song song với mặt phẳng (Q) thì mặt phẳng (P) song song với mặt phẳng (Q).

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Biên Hòa - Hà Nam lần 1
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Biên Hòa – Hà Nam lần 1 gồm 50 câu hỏi trắc nghiệm. Trích một số bài toán trong đề: 1. Một người thả 1 lá bèo vào một cái ao, sau 12 giờ thì bèo sinh sôi phủ kín mặt ao. Hỏi sau mấy giờ thì bèo phủ kín 1/5 mặt ao, biết rằng sau mỗi giờ thì lượng bèo tăng gấp 10 lần lượng bèo trước đó và tốc độ tăng không đổi? 2. Trong không gian cho hình chữ nhật ABCD có AB =1, AD = 2. Gọi M N, lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN ta được một hình trụ. Tính diện tích toàn phần của hình trụ đó? 3. Một viên phấn bảng có dạng một khối trụ với bán kính đáy bằng 0,5cm, chiều dài 6cm. Người ta làm một hình hộp chữ nhật bằng carton đựng các viên phấn đó với kích thước 6cm x 5cm x 6cm. Hỏi cần ít nhất bao nhiêu hộp kích thước như trên để xếp 460 viên phấn?
Bộ đề thi thử THPT Quốc gia 2017 môn Toán - Trần Văn Tài
Bộ đề thi thử THPT Quốc gia 2017 môn Toán tuyển chọn có đáp án. Tài liệu sẽ tiếp tục được cập nhật.
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Trần Hưng Đạo - Nam Định
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Trần Hưng Đạo – Nam Định gồm 50 câu hỏi trắc nghiệm, có đáp án. Trích một số bài toán trong đề: 1. Cắt một khối trụ bởi một mặt phẳng qua trục ta được thiết diện là hình chữ nhật ABCD có AB và CD thuộc hai đáy của khối trụ. Biết AD = 6 và góc CAD bằng 60 độ. Thể tích của khối trụ là? 2. Cho tứ diện OABC có OA, OB, OC đôi một vuông góc nhau và OA = a, OB = 2a, OC = 3a. Diện tích của mặt cầu (S) ngoại tiếp hình chóp S.ABC bằng.
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Lê Hồng Phong - Nam Định lần 1
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Lê Hồng Phong – Nam Định lần 1 gồm 50 câu hỏi trắc nghiệm. Trích một số bài toán trong đề: 1. Khẳng định nào sau đây là khẳng định đúng? A Hàm số đạt cực đại tại điểm x = 0 và đạt cực tiểu tại điểm x = 4 B Hàm số có đúng một cực trị C Hàm số có giá trị cực tiểu bằng 1 D Hàm số có giá trị lớn nhất bằng 1 và giá trị nhỏ nhất bằng -15 2. Dynamo là một nhà ảo thuật gia đại tài người Anh nhưng người ta thường nói Dynamo làm ma thuật chứ không phải làm ảo thuật. Bất kì màn trình diến nào của anh chảng trẻ tuổi tài cao này đều khiến người xem há hốc miệng kinh ngạc vì nó vượt qua giới hạn của khoa học. Một lần đến New York anh ngấu hứng trình diễn khả năng bay lơ lửng trong không trung của mình bằng cách di truyển từ tòa nhà này đến toà nhà khác và trong quá trình anh di chuyển đấy có một lần anh đáp đất tại một điểm trong khoảng cách của hai tòa nhà (Biết mọi di chuyển của anh đều là đường thẳng). Biết tòa nhà ban đầu Dynamo đứng có chiều cao là a(m), tòa nhà sau đó Dynamo đến có chiều cao là b(m) (a < b) và khoảng cách giữa hai tòa nhà là c(m). Vị trí đáp đất cách tòa nhà thứ nhất một đoạn là x(m) hỏi x bằng bao nhiêu để quãng đường di chuyển của Dynamo là bé nhất. 3. Cho một cái bể nước hình hộp chữ nhật có ba kích thước 2m, 3m, 2m lần lượt là chiều dài, chiều rộng, chiều cao của lòng trong đựng nước của bể. Hàng ngày nước ở trong bể được lấy ra bởi một cái gáo hình trụ có chiều cao là 5cm bà bán kính đường tròn đáy là 4cm. Trung bình một ngày được múc ra 170 gáo nước để sử dụng (Biết mỗi lần múc là múc đầy gáo). Hỏi sau bao nhiều ngày thì bể hết nước biết rằng ban đầu bể đầy nước.