Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Thái Bình

Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Thái Bình Bản PDF - Nội dung bài viết Đề thi Tuyển sinh THPT môn Toán năm 2020 - 2021 Sở GD&ĐT Thái Bình Đề thi Tuyển sinh THPT môn Toán năm 2020 - 2021 Sở GD&ĐT Thái Bình Vào ngày … tháng 07 năm 2020, Sở Giáo dục và Đào tạo tỉnh Thái Bình đã tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán cho năm học 2020 - 2021. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, trong đó có đáp án và lời giải chi tiết để học sinh tham khảo sau khi làm bài. Trích dẫn một phần nội dung trong đề thi Tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 của Sở GD&ĐT Thái Bình: Đề bài yêu cầu học sinh chứng minh rằng tứ giác MAOB nội tiếp và MO vuông góc với AB, đồng thời giải các câu hỏi liên quan đến điểm đặc biệt trên đường tròn đường kính chứa điểm M nằm ngoài vòng tròn đó. Bài toán đã đưa ra những yếu tố hóc búa khiến học sinh phải áp dụng kiến thức và kỹ năng tính toán một cách logic và chính xác. Dấn thêm vào đó, việc giải quyết các bài toán như vậy không chỉ giúp học sinh rèn luyện tư duy logic mà còn giúp họ phát triển khả năng giải quyết vấn đề theo hướng phân tích và suy luận. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 của Sở GD&ĐT Thái Bình là một cơ hội để học sinh thể hiện năng lực và kiến thức của mình trước một bài kiểm tra đầy thách thức, từ đó hướng tới sự thành công trong học tập và sự nghiệp sau này.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Lạng Sơn
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Lạng Sơn Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Lạng Sơn Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Lạng Sơn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Lạng Sơn bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút (không tính thời gian phát đề). Đề thi này dành cho các thí sinh muốn thi vào các lớp chuyên Toán. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Lạng Sơn: Cho a, b là các số nguyên dương thỏa mãn a − 1 và b + 2021 đều chia hết cho 6. Chứng minh 4a + a + b chia hết cho 6. Tìm tất cả các số nguyên tố p sao cho p là ước của 5p − 2p. Tìm tất cả các số nguyên tố p và q sao cho (5p − 2p) (5p − 2p)pq là một số nguyên. Bên trong hình chữ nhật có chiều dài 101 cm và chiều rộng 20 cm cho 10101 điểm. Vẽ 10101 hình tròn có tâm là 10101 điểm đã cho và bán kính đều bằng √2 cm. Liệu có 6 điểm thuộc vào phần chung của 6 hình tròn nhận chính 6 điểm ấy làm tâm không? Tại sao? Đây là những bài toán đặc sắc đòi hỏi sự logic, khéo léo và kiến thức vững chắc trong môn Toán. Thí sinh cần phải rèn luyện kỹ năng tư duy và giải quyết vấn đề để có thể hoàn thành đề thi một cách tốt nhất.
Đề tuyển sinh chuyên môn Toán năm 2020 2021 sở GD ĐT Cao Bằng
Nội dung Đề tuyển sinh chuyên môn Toán năm 2020 2021 sở GD ĐT Cao Bằng Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Cao Bằng Đề tuyển sinh chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Cao Bằng Đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Cao Bằng bao gồm 01 trang với 05 bài toán dạng tự luận, học sinh có thời gian làm bài thi là 150 phút. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Cao Bằng: + Trong mặt phẳng tọa độ Oxy, cho parabol (P) : y = x^2 và đường thẳng (d) : y = 2(m - 1)x - m^2 + 3. Tìm m để đường thẳng (d) cắt (P) tại hai điểm phân biệt có tọa độ (x1, y1) và (x2, y2) sao cho: y1 + y2 - x1x2 - 33 = 0. + Tìm tất cả các số dương x để biểu thức Q = 3x/(x^2 - x + 1) nhận giá trị là những số nguyên. + Tìm tất cả các số tự nhiên a có bốn chữ số thỏa mãn. Khi chia a cho 80 ta được số dư là 20 và khi chia a cho 41 ta được số dư là 11. Đề tuyển sinh này đặt ra những bài toán phức tạp nhưng hấp dẫn, đòi hỏi học sinh phải có kiến thức vững và biết áp dụng lẽ logic để giải quyết. Qua đề thi này, học sinh sẽ có cơ hội thể hiện khả năng toán học của mình một cách sáng sủa và chính xác.
Đề tuyển sinh chuyên môn Toán (chung) năm 2020 2021 sở GD ĐT Hà Nam
Nội dung Đề tuyển sinh chuyên môn Toán (chung) năm 2020 2021 sở GD ĐT Hà Nam Bản PDF - Nội dung bài viết Thông tin về Đề tuyển sinh chuyên môn Toán (chung) năm 2020-2021 sở GD&ĐT Hà Nam Thông tin về Đề tuyển sinh chuyên môn Toán (chung) năm 2020-2021 sở GD&ĐT Hà Nam Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2020-2021 sở GD&ĐT Hà Nam bao gồm 5 bài toán dạng tự luận trên 1 trang đề thi. Thời gian làm bài thi là 120 phút và kỳ thi sẽ diễn ra vào ngày ... tháng 07 năm 2020. Dưới đây là một số câu hỏi mẫu trong đề tuyển sinh: Cho hàm số y = ax^2 (với a khác 0) có đồ thị là parabol như hình vẽ. Hãy xác định hệ số a. Giải phương trình 12x^2 = x + m^2 (trong đó m là tham số) và chứng minh rằng phương trình luôn có hai nghiệm phân biệt x1, x2 với mọi m ∈ R. Tìm các giá trị của m để x1 = p^3 - x^3. Xét đường tròn (O) có đường kính AB cố định. Hãy chứng minh rằng tứ giác BCKH nội tiếp và tam giác AMK đồng dạng với tam giác ACM. Cho độ dài đoạn thẳng AH = a. Hãy tính AK.AC - HA.HB theo a. Xác định vị trí của điểm C để độ dài đoạn thẳng IN nhỏ nhất, trong đó I là tâm đường tròn ngoại tiếp tam giác MKC. Đề tuyển sinh này không chỉ đánh giá kiến thức Toán của thí sinh mà còn đánh giá khả năng phân tích, suy luận và trí tuệ. Hãy chuẩn bị kỹ càng và tự tin để đối mặt với thách thức này!
Đề tuyển sinh chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD ĐT Gia Lai
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD ĐT Gia Lai Bản PDF - Nội dung bài viết Đề thi tuyển sinh chuyên môn Toán (chuyên) năm 2020 - 2021 của Sở Giáo dục và Đào tạo Gia Lai Đề thi tuyển sinh chuyên môn Toán (chuyên) năm 2020 - 2021 của Sở Giáo dục và Đào tạo Gia Lai Đề thi tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 - 2021 của Sở Giáo dục và Đào tạo Gia Lai bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút. Trích dẫn từ đề thi tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 - 2021 của Sở Giáo dục và Đào tạo Gia Lai: + Tính giá trị của tham số m để hàm số y = (m - 1) x + m2 nghịch biến trên tập hợp số thực và đồ thị của nó đi qua điểm M (2; 1). + Cho phương trình x2 - 2(m - 1)x + 2m - 4 = 0 (với m là tham số) có hai nghiệm phân biệt x1, x2. Tìm giá trị của tham số m sao cho x21 + x22 = 3. + Tìm nghiệm nguyên dương của phương trình 2x2 - 8x + 62 = (x - 1)y2 + x2 - 6x + 5. Đề thi này là cơ hội để các thí sinh thử sức, hiểu biết và khả năng giải quyet vấn đề một cách logic và chính xác.