Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán nguyên hàm thường gặp trong kỳ thi THPTQG

Tài liệu nguyên hàm và các phương pháp tìm nguyên hàm gồm 75 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển tập các câu hỏi và bài toán trắc nghiệm chủ đề nguyên hàm cùng các vấn đề liên quan, có đáp án và lời giải chi tiết, các câu hỏi và bài toán được tác giả trích dẫn từ các đề thi THPT Quốc gia môn Toán những năm gần đây. Khái quát nội dung tài liệu các dạng toán nguyên hàm thường gặp trong kỳ thi THPTQG: PHẦN A . CÂU HỎI Dạng 1. Nguyên hàm cơ bản (dùng bảng nguyên hàm) (Trang số 2). + Dạng 1.1 Tìm nguyên hàm cơ bản không có điều kiện (Trang số 2). + Dạng 1.2 Tìm nguyên hàm cơ bản có điều kiện (Trang số 11). Dạng 2. Sử dụng phương pháp VI PHÂN để tìm nguyên hàm (Trang số 16). + Dạng 2.1 Tìm nguyên hàm không có điều kiện (Trang số 16). + Dạng 2.2 Tìm nguyên hàm có điều kiện (Trang số 17). Dạng 3. Sử dụng phương pháp ĐỔI BIẾN để tìm nguyên hàm (Trang số 18). + Dạng 3.1 Tìm nguyên hàm không có điều kiện (Trang số 18). + Dạng 3.2 Tìm nguyên hàm có điều kiện (Trang số 21). Dạng 4. Nguyên hàm từng phần (Trang số 22). + Dạng 4.1 Tìm nguyên hàm không có điều kiện (Trang số 22). + Dạng 4.2 Tìm nguyên hàm có điều kiện (Trang số 25). Dạng 5. Sử dụng nguyên hàm để giải toán (Trang số 26). Dạng 6. Một số bài toán khác liên quan đến nguyên hàm (Trang số 30). [ads] PHẦN B . ĐÁP ÁN THAM KHẢO Dạng 1. Nguyên hàm cơ bản (dùng bảng nguyên hàm) (Trang số 33). + Dạng 1.1 Tìm nguyên hàm cơ bản không có điều kiện (Trang số 33). + Dạng 1.2 Tìm nguyên hàm cơ bản có điều kiện (Trang số 38). Dạng 2. Sử dụng phương pháp VI PHÂN để tìm nguyên hàm (Trang số 44). + Dạng 2.1 Tìm nguyên hàm không có điều kiện (Trang số 44). + Dạng 2.2 Tìm nguyên hàm có điều kiện (Trang số 45). Dạng 3. Sử dụng phương pháp ĐỔI BIẾN để tìm nguyên hàm (Trang số 47). + Dạng 3.1 Tìm nguyên hàm không có điều kiện (Trang số 47). + Dạng 3.2 Tìm nguyên hàm có điều kiện (Trang số 51). Dạng 4. Nguyên hàm từng phần (Trang số 53). + Dạng 4.1 Tìm nguyên hàm không có điều kiện (Trang số 53). + Dạng 4.2 Tìm nguyên hàm có điều kiện (Trang số 57). Dạng 5. Sử dụng nguyên hàm để giải toán (Trang số 60) Dạng 6. Một số bài toán khác liên quan đến nguyên hàm (Trang số 69). Tài liệu giúp quý thầy, cô giáo có nguồn bài tập chất lượng về nguyên hàm để tham khảo, các em học sinh học tốt chương trình Giải tích 12 chương 3 và ôn tập chuẩn bị cho kỳ thi Trung học Phổ thông Quốc gia môn Toán.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề cơ bản ứng dụng tích phân trong hình học ôn thi TN THPT môn Toán
Tài liệu gồm 44 trang, được biên soạn bởi thầy giáo Lê Bá Bảo (giáo viên Toán trường THPT Đặng Huy Trứ, tỉnh Thừa Thiên Huế), hướng dẫn giải các dạng toán cơ bản chuyên đề ứng dụng tích phân trong hình học trong chương trình môn Toán lớp 12, hướng đến kỳ thi tốt nghiệp THPT môn Toán; tài liệu phù hợp với các em học sinh lớp 12 mất gốc Toán. Chủ đề : ỨNG DỤNG TÍCH PHÂN TRONG HÌNH HỌC: TÍNH DIỆN TÍCH HÌNH PHẲNG. I. TÓM TẮT LÝ THUYẾT. Bài toán 1: Diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số f x liên tục trên đoạn a b trục hoành và hai đường thẳng x a x b được tính theo công thức: d b a S f x x (1). Bài toán 2: Diện tích S của hình phẳng giới hạn bởi các đồ thị của hàm số f x g x liên tục trên a b và hai đường thẳng x a x b được tính theo công thức: d b a S f x g x x (2). II. BÀI TẬP TRẮC NGHIỆM MINH HỌA. III. LỜI GIẢI CHI TIẾT. Chủ đề : ỨNG DỤNG TÍCH PHÂN TRONG HÌNH HỌC: TÍNH THỂ TÍCH KHỐI TRÒN XOAY. I. TÓM TẮT LÝ THUYẾT. Một hình phẳng quay quanh một trục nào đó tạo nên một khối tròn xoay. Dạng 1: (Hình phẳng quay quanh Ox) Cho hình phẳng được giới hạn bởi đồ thị hàm số y f x liên tục trên a b trục Ox và hai đường thẳng x a x b quanh trục Ox ta được khối tròn xoay có thể tích là: d 2 b x a V f x x (3). Dạng 2: Thể tích khối tròn xoay có được khi quay nhiều đồ thị hàm số quanh một trục. Ta tiến hành chia phần thể tích V thành các phần thể tích thành phần 1 2 V V mà mỗi phần được tính bằng các công thức đã cho. II. BÀI TẬP TRẮC NGHIỆM MINH HỌA. III. LỜI GIẢI CHI TIẾT.
Chuyên đề các dạng tích phân hàm ẩn điển hình mức độ VD - VDC
Tài liệu gồm 84 trang, được biên soạn bởi thầy giáo Đặng Việt Đông (giáo viên Toán trường THPT Nho Quan A, tỉnh Ninh Bình), hướng dẫn phương pháp giải các dạng bài tập tích phân hàm ẩn điển hình mức độ vận dụng và vận dụng cao (VD – VDC), giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3: Nguyên Hàm – Tích Phân Và Ứng Dụng. Dạng 1 . Áp dụng các quy tắc và đạo hàm của hàm số hợp trang. + Quy tắc đạo hàm tích 3. + Quy tắc đạo hàm thương 7. + Áp dụng công thức đạo hàm của hàm chứa căn 15. + Áp dụng công thức đạo hàm của hàm mũ 18. + Áp dụng công thức đạo hàm của hàm lôgarit 19. + Áp dụng các công thức đạo hàm khác 21. Dạng 2 . Phương pháp đổi biến 22. + Tích phân hàm ẩn đổi biến dạng 1 22. + Tích phân hàm ẩn đổi biến dạng 2 28. + Tích phân hàm ẩn đổi biến dạng 3 39. + Tích phân hàm ẩn đổi biến dạng 4 49. + Tích phân hàm ẩn đổi biến dạng 5 51. + Tích phân hàm ẩn đổi biến dạng 6 53. Dạng 3 . Phương pháp từng phần 55. + Trường hợp riêng 68. Dạng 4 . Phương trình vi phân tuyến tính cấp 1 78.
Chủ đề nguyên hàm, tích phân và ứng dụng ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 398 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề nguyên hàm, tích phân và ứng dụng ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. DẠNG 1 Các phương pháp tính nguyên hàm cơ bản. DẠNG 2 Các phương pháp tính tích phân cơ bản. DẠNG 3 Tích phân cho bởi nhiều hàm. DẠNG 4 Kết hợp đổi biến, từng phần tính tích phân. DẠNG 5 Tích phân hàm ẩn phần 1. DẠNG 6 Tích phân hàm ẩn phần 2. DẠNG 7 Tích phân đặc biệt kết hợp với tích phân hàm ẩn. DẠNG 8 Tính tích phân bằng phương pháp vi phân. DẠNG 9 Tính tích phân dựa vào đồ thị. DẠNG 10.1 Ứng dụng tích phân tích diện tích hình phẳng. DẠNG 10.2 Ứng dụng tích phân tính diện tích hình phẳng. DẠNG 11 Toán thực tế liên quan đến diện tích hình phẳng. DẠNG 12 Ứng dụng tích phân vào bài toán chuyển động. DẠNG 13 Tích phân trong đề thi của Bộ Giáo dục và Đào tạo.
Một số bài toán chọn lọc về tích phân
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề một số bài toán chọn lọc về tích phân, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3.