Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic 27 tháng 04 Toán 8 năm 2022 - 2023 sở GDĐT Bà Rịa - Vũng Tàu

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic 27 tháng 04 môn Toán 8 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 23 tháng 03 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề Olympic 27 tháng 04 Toán 8 năm 2022 – 2023 sở GD&ĐT Bà Rịa – Vũng Tàu : + Cho tam giác ABC vuông tại A (AB AC) có đường cao AH và đường phân giác AM. Kẻ ME vuông góc với AB tại E và MF vuông góc với AC tại F. Gọi K là giao điểm của AH và ME. Tia BK cắt AC tại L. 1) Chứng minh CM CH CF CA và HF là tia phân giác của góc AHC. 2) Chứng minh tam giác BML cân. 3) Chứng minh BE HB CF HC. + Cho góc xOy nhọn và điểm A cố định nằm trong góc xOy. Đường thẳng d di động đi qua A và cắt Ox Oy theo thứ tự tại B C. Tìm điều kiện của đường thẳng d đối với OA để 1 1 AB AC đạt giá trị lớn nhất. + Tìm tất cả các số nguyên dương n sao cho 2 n 2020 chia hết cho n 45. Cho x và y là các số hữu tỉ khác 1 và thỏa mãn 1 2 1 2 1 1 1 x y x y.

Nguồn: toanmath.com

Đọc Sách

Đề giao lưu HSG Toán 8 năm 2022 - 2023 phòng GDĐT Thanh Hà - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Thanh Hà, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 8 năm 2022 – 2023 phòng GD&ĐT Thanh Hà – Hải Dương : + Cho đoạn thẳng AB, M là một điểm nằm giữa A và B. Vẽ về một phía của AB các hình vuông AMCD, BMEF. Gọi H là giao điểm của AE và BC. 1) Chứng minh AME CMB và AE BH. 2) Gọi O và O’ lần lượt là giao điểm hai đường chéo của hình vuông AMCD, BMEF. Chứng minh ba điểm D, H, F thẳng hàng. 3) Chứng minh đường thẳng DF luôn đi qua một điểm cố định khi M di chuyển trên đoạn thẳng cố định AB. + Xác định các số a, b để đa thức f x x ax b 3 2 2 chia hết cho đa thức 1 2 g x x. + Tìm giá trị nhỏ nhất của biểu thức: 2 2 B xy x 2 y 6 12x 24x 3y 18y 2053.
Đề giao lưu HSG Toán 8 năm 2022 - 2023 phòng GDĐT Vĩnh Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán 8 năm học 2022 – 2023 cụm Trung học Cơ sở phòng Giáo dục và Đào tạo UBND huyện Vĩnh Lộc, tỉnh Thanh Hóa; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 22 tháng 03 năm 2023. Trích dẫn đề giao lưu HSG Toán 8 năm 2022 – 2023 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa : + Tìm đa thức P(x) thoả mãn: P(x) chia cho x + 3 dư 1; chia cho x – 4 dư 8; chia cho (x + 3)(x – 4) được thương là 3x và còn dư. + Tìm số tự nhiên có 9 chữ số: 1 2 312 31 2 3 A aa abbba trong đó 1 a 0 và 123 12 3 bbb aa a 2 và đồng thời A viết được dưới dạng 2 1 234 A p với 1234 pp là bốn số nguyên tố. + Cho tam giác ABC vuông tại A (AB AC) gọi AD là tia phân giác của góc BAC. Gọi M và N lần lượt là hình chiếu của D trên AB và AC; E là giao điểm của BN và DM, F là giao điểm của CM và DN. a) Chứng minh tứ giác AMDN là hình vuông và EF BC. b) Gọi H là giao điểm của BN và CM. Chứng minh ∆ANB đồng dạng với ∆NFA và H là trực tâm ∆AEF. c) Gọi P là điểm trên AN, Q là điểm trên AM sao cho AP = MQ. Tìm vị trí của P và Q để diện tích tứ giác MQPN đạt giá trị nhỏ nhất.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Chương Mỹ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra chất lượng học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Chương Mỹ, thành phố Hà Nội. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Chương Mỹ – Hà Nội : + Giải phương trình: (4x − 5)2(2x − 3)(x − 1) = 9. Tìm các cặp số nguyên (x;y) thỏa mãn: 3×2 + 5y2 = 345. Tìm hệ số a, b để đa thức x5 – 6×2 + ax + b chia hết cho đa thức x2 – 3x + 2. + Cho hình chữ nhật ABCD, gọi H là hình chiếu của D trên AC. Gọi M, N, K lần lượt là trung điểm của BC, AH, DH. 1) Tứ giác MNKC là hình gì? Vì sao? 2) Chứng minh rằng: DH2 = HA.HC. 3) Chứng minh rằng: AND đồng dạng với DKC. 4) Chứng minh rằng: DN vuông góc NM. + Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất.
Đề giao lưu HSG Toán 8 năm 2022 - 2023 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND thành phố Chí Linh, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 8 năm 2022 – 2023 phòng GD&ĐT Chí Linh – Hải Dương : + Đa thức f x chia cho x + 1 dư 4, chia cho x2 + 1 dư 2 3 x. Tìm phần dư khi chia đa thức f x cho 2 x x 1 1. + Chứng minh rằng nếu số nguyên n lớn hơn 1 thoả mãn 2 n 4 và 2 n 16 là các số nguyên tố thì n chia hết cho 5. + Cho tam giác ABC nhọn có AB < AC. Các đường cao AD, BE, CF cắt nhau tại điểm H. 1) Chứng minh: 2 AH BH CH AD BE CF. 2) Gọi M là trung điểm của AC. Qua H kẻ đường thẳng vuông góc với HM, đường thẳng này cắt AB, BC lần lượt tại P, Q. Chứng minh AM.BQ = AH.BH. 3) Chứng minh MPQ là tam giác cân.