Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán THCS năm 2023 - 2024 phòng GDĐT Buôn Ma Thuột - Đắk Lắk

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS cấp thành phố năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Buôn Ma Thuột, tỉnh Đắk Lắk; kỳ thi được diễn ra vào thứ Hai ngày 26 tháng 02 năm 2024; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi Toán THCS năm 2023 – 2024 phòng GD&ĐT Buôn Ma Thuột – Đắk Lắk : + Công ty X và công ty Y là hai công ty có uy tín tại Hà Nội mà anh Minh đang có nhu cầu xin vào làm việc. Cả hai công ty đều có chế độ thu hút người tài và đưa ra hình thức trả lương trong thời gian thử việc như sau: Công ty X: Anh Minh nhận được 1500 USD ngay khi ký hợp đồng thử việc và mỗi tháng sẽ được trả lương 1800 USD. Công ty Y: Anh Minh nhận được 2500 USD ngay khi ký hợp đồng thử việc và mỗi tháng sẽ được trả lương 1600 USD. Em hãy tư vấn giúp anh Minh lựa chọn công ty nào để thử việc sao cho tổng số tiền thử việc nhận được là lớn nhất. Biết thời gian thử việc của cả hai công ty đều từ 3 tháng đến 8 tháng. + Cho điểm A nằm ngoài đường tròn (O; R). Từ A kẻ hai tiếp tuyến AB, AC và cát tuyến ADE không đi qua tâm đường tròn (O; R) (B, C là tiếp điểm; D nằm giữa A và E). Tiếp tuyến tại D của đường tròn (O) cắt AB, AC theo thứ tự tại I và K. Gọi H là giao điểm của AO và BC. 1. Chứng minh BAO = BCO. 2. Chứng minh AH AD AE AO. 3. Tính số đo góc IOK khi OA = 2R. 4. Qua điểm O kẻ đường thẳng vuông góc với OA cắt AB tại P và cắt AC tại Q. Chứng minh rằng IP + KQ ≥ PQ. + Cho tam giác ABC cân đỉnh A. Gọi O là trung điểm của BC. Đường tròn (O) tiếp xúc với AB ở E, tiếp xúc với AC ở F. Điểm H chạy trên cung nhỏ EF tiếp tuyến của đường tròn tại H cắt AB, AC lần lượt tại M, N. Xác định vị trí của điểm H để diện tích tứ giác BMNC đạt giá trị nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2023 - 2024 trường THCS Hải Hòa - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp trường môn Toán 9 năm học 2023 – 2024 trường THCS Hải Hòa, thị xã Cửa Lò, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 trường THCS Hải Hòa – Nghệ An : + Cho biểu thức: P = 2 x 1 a) Rút gọn P. b) Tính giá trị của biểu thức P tại |x – 1| = 4 − 12 + 19 – 192. c) Tìm x để 6 Q P nhận giá trị nguyên. + Chứng minh rằng với mọi n N và n > 2 thì n4 – n + 2 không phải là số chính phương. + Cho ABC vuông tại A; BC = 2a (cm). Đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AC, AB. Chứng minh rằng: a) AB.EB + AC.EH = AB2. b) Qua điểm B vẽ đường thẳng song song với AC, qua điểm C vẽ đường thảng song song với AB, hai đường thẳng này cắt nhau tại M. Gọi N và K lần lượt là trung điểm của BM và HC. Chứng minh AK vuông góc với KN. c) Tìm giá trị lớn nhất của diện tích tứ giác ADHE.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp huyện môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Kim Thành, tỉnh Hải Dương; đề thi hình thức tự luận, gồm 01 trang với 05 bài toán, thời gian làm bài 120 phút (không kể thời gian giao đề). Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Kim Thành – Hải Dương : + Tìm tất cả các cặp số nguyên dương (x;y) sao cho x2 – 3y2 – 2xy – 2x + 14y = 11. Cho n là số nguyên dương thỏa mãn 12n2 + 1 là số nguyên. Chứng minh rằng: 212n2 + 1 + 2 là số chính phương. + Cho đường tròn (O) và đường thẳng d cắt đường tròn (O) tại hai điểm B, C (d không đi qua O). Trên tia đối của tia BC lấy điểm A (A nằm ngoài (O)). Kẻ AM và AN là các tiếp tuyến với đường tròn (O) tại M và N. Gọi I là trung điểm của BC, AO cắt MN tại H và cắt đường tròn tại các điểm P và Q (P nằm giữa A và O), BC cắt MN tại K. a) Chứng minh AK.AI = AM2. b) Gọi D là trung điểm HQ, từ H kẻ đường thẳng vuông góc với MD cắt đường thẳng MP tại E. Chứng minh P là trung điểm của ME. + Cho tam giác ABC, trên trung tuyến AD lấy điểm I cố định (I khác A và D). Đường thẳng d đi qua I cắt các cạnh AB, AC lần lượt tại M, N. Xác định vị trí của đường thẳng d để diện tích tam giác AMN đạt giá trị nhỏ nhất.
Đề học sinh giỏi Toán 9 vòng 1 năm 2023 - 2024 phòng GDĐT Tứ Kỳ - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tứ Kỳ, tỉnh Hải Dương; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 150 phút. Trích dẫn Đề học sinh giỏi Toán 9 vòng 1 năm 2023 – 2024 phòng GD&ĐT Tứ Kỳ – Hải Dương : + Cho các số thực a, b không âm thỏa mãn điều kiện 2a + 2b + ab = 4. Tính giá trị của biểu thức P. + Cho a, b, c là các số nguyên thỏa mãn a + b + c = c3 – 7c. Chứng minh rằng: a3 + b3 + c3 chia hết cho 6. + Cho tam giác ABC vuông tại A có đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB và AC. 1) Chứng minh: AE.EB + AF.FC = AH2 và BC.cos3B = BE. 2) Chứng minh: BE.CH + CF.BH = AH.BC. 3) Gọi M là trung điểm của BC. Từ A kẻ đường thẳng d vuông góc với AM tại A. Từ B kẻ tia Bx vuông góc với BC cắt đường thẳng d tại P. Chứng minh PC đi qua trung điểm của AH.
Đề chọn đội tuyển HSG Toán 9 vòng 1 năm 2023 - 2024 trường THCS Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra CLB Văn Hóa Toán 9 và chọn đội tuyển học sinh giỏi môn Toán 9 vòng 1 năm học 2023 – 2024 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 07 tháng 09 năm 2023. Trích dẫn Đề chọn đội tuyển HSG Toán 9 vòng 1 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội : + Cho x và y là các số nguyên dương thỏa mãn x3 + y và x + y3 cùng chia hết cho x2 + y2. Chứng minh rằng 2x + 2y là số chính phương. + Cho tam giác ABC vuông tại A (AB < AC). Vẽ đường cao AH (H thuộc BC). Trên tia đối của tia BC lấy điểm K sao cho KH = HA. Qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P. 1. Chứng minh rằng tam giác AKC đồng dạng với tam giác BPC. 2. Gọi Q là trung điểm của BP. Chứng minh BQH = BCP. 3. Tia AQ cắt BC tại I. Chứng minh AH/HB – BC/IB = 1. + Xét tập T = {1; 2; 3; …; 13}. Lập tất cả các tập con hai phần tử trong T sao cho hiệu của hai phần tử đó là 5 hoặc 8. Cho M là tập con của S = {1; 2; 3; …; 869} có tính chất hiệu hai số bất kỳ của M không là 5 hoặc 8. Hỏi M có nhiều nhất bao nhiêu phần tử?