Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng lớp 9 môn Toán năm 2022 2023 trường THCS Nguyễn Trãi Hà Nội

Nội dung Đề khảo sát chất lượng lớp 9 môn Toán năm 2022 2023 trường THCS Nguyễn Trãi Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát chất lượng môn Toán lớp 9 năm 2022 – 2023 trường THCS Nguyễn Trãi Hà Nội Đề khảo sát chất lượng môn Toán lớp 9 năm 2022 – 2023 trường THCS Nguyễn Trãi Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến bạn đọc đề khảo sát chất lượng môn Toán lớp 9 năm học 2022 – 2023 của trường THCS Nguyễn Trãi, thành phố Hà Nội. Đề thi bao gồm các câu hỏi thú vị và bổ ích để kiểm tra kiến thức của các em. 1. Bài toán thứ nhất yêu cầu học sinh giải bằng cách lập phương trình hoặc hệ phương trình. Đề bài cho biết về một khu vườn hình chữ nhật, với điều kiện khi tăng mỗi cạnh thêm 4m, diện tích tăng 216m2. Nếu chiều rộng tăng thêm 2m, chiều dài giảm 5m, diện tích sẽ giảm 50m2. Học sinh cần tính chu vi của khu vườn đó. 2. Bài toán thứ hai liên quan đến cột cờ có bóng in trên sân vận động. Học sinh cần tính chiều cao của cột cờ khi biết chiều dài cột là 19m và góc tạo bởi tia nắng với mặt đất là 320. 3. Bài toán cuối cùng liên quan đến hàm số. Học sinh sẽ phải tìm giá trị của m để đồ thị hàm số (m – 1)x + m + 3 song song với đồ thị hàm số -2x + 1. Bên cạnh đó, học sinh cần tìm m để đồ thị của hàm số đó và đường thẳng y = x + 3m + 2 cắt nhau tại một điểm trên trục tung. Đề thi này sẽ giúp các em ôn tập và kiểm tra kiến thức Toán lớp 9 một cách hiệu quả. Chúc các em làm bài tốt!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 năm 2018 - 2019 phòng GDĐT Phúc Yên - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát Toán 9 năm 2018 – 2019 phòng GD&ĐT Phúc Yên – Vĩnh Phúc; đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn đề khảo sát Toán 9 năm 2018 – 2019 phòng GD&ĐT Phúc Yên – Vĩnh Phúc : + Cho tam giác ABC vuông ở A (AB > AC), đường cao AH. Trên nửa mặt phẳng bờ BC có chứa điểm A, vẽ nửa đường tròn tâm O đường kính BH cắt AB tại E; vẽ nửa đường tròn tâm O’ đường kính CH cắt AC tại F. Gọi I là giao điểm của AH và EF. a) Chứng minh AE.AB = AF.AC. b) Chứng minh EF là tiếp tuyến của đường tròn (O). c) Chứng minh BI vuông góc AO’. + Cho các số thực dương a, b, c thỏa mãn điều kiện a + b + c = 3. Chứng minh rằng? + Cho đường tròn (O) đường kính bằng 6cm và dây MN bằng 2cm. Khoảng cách từ O đến dây MN bằng?
Đề khảo sát chất lượng Toán 9 năm 2018 - 2019 trường THCS Chu Văn An - Hà Nội lần 1
Đề khảo sát chất lượng Toán 9 năm 2018 – 2019 trường THCS Chu Văn An – Hà Nội lần 1 được biên soạn nhằm kiểm tra các kiến thức Toán 9 học sinh đã học, đề gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 90 phút, đây là hình thức đề tương tự với các đề thi vào 10 môn Toán, kỳ thi được diễn ra vào ngày 30 tháng 09 năm 2018.
Đề khảo sát chất lượng Toán 9 năm 2018 trường THPT chuyên Hà Nội - Amsterdam
Đề khảo sát chất lượng Toán 9 năm 2018 trường THPT chuyên Hà Nội – Amsterdam gồm 1 trang với 5 bài toán tự luận, đề nhằm đánh giá kiến thức học sinh khối lớp 9 giai đoạn giữa HK2 năm học 2017 – 2018, đồng thời tạo cơ hội để các em được thử sức, rèn luyện chuẩn bị cho kỳ thi vào lớp 10 năm học 2018 – 2019 môn Toán, đề thi có lời giải chi tiết .
Đề thi khảo sát Toán 9 năm học 2017 - 2018 phòng GD và ĐT Ba Đình - Hà Nội
Đề thi khảo sát Toán 9 năm học 2017 – 2018 phòng GD và ĐT Ba Đình – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 90 phút, kỳ thi được tổ chức vào ngày 03/03/2018 nhằm giúp học sinh khối 9 tại các trường THCS Phan Chu Trinh và THCS Mạc Đĩnh Chi (Hà Nội) rèn luyện chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán, đề thi có lời giải chi tiết . Trích dẫn đề thi khảo sát Toán 9 : + Để hoàn thành một công việc theo dự định, cần một số công nhân làm trong một số ngày nhất định. Nếu bớt đi 2 công nhân thì phải mất thêm 3 ngày mới có thể hoàn thành công việc. Nếu tăng thêm 5 công nhân thì công việc hoàn thành sớm được 4 ngày. Hỏi theo dự định, cần bao nhiêu công nhân và làm bao nhiêu ngày? + Cho phương trình x^2 – 2(m – 1)x – m^2 + m – 1 = 0 (x là ẩn số). a) Giải phương trình đã cho khi m = 2. b) Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt với mọi số thực m. [ads] + Cho tam giác ABC nhọn nội tiếp đường tròn (O), đường cao AN, CK của tam giác ABC cắt nhau tại H. 1. Chứng minh tứ giác BKHN là tứ giác nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác BKHN. 2. Chứng minh góc KBH = KCA. 3. Gọi E là trung điểm của cạnh AC. Chúng minh KE là tiếp tuyến của đường tròn (I). 4. Đường tròn (I) cắt (O) tại M. Chứng minh BM vuông góc với ME.