Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 9 môn Toán cấp huyện năm 2022 2023 phòng GD ĐT Sơn Động Bắc Giang

Nội dung Đề thi HSG lớp 9 môn Toán cấp huyện năm 2022 2023 phòng GD ĐT Sơn Động Bắc Giang Bản PDF Bài thi Học sinh giỏi Toán cấp huyện lớp 9 năm học 2022-2023 tại phòng Giáo dục và Đào tạo huyện Sơn Động, tỉnh Bắc Giang đã thu hút sự quan tâm của nhiều giáo viên, học sinh và phụ huynh. Đề thi được thiết kế theo cấu trúc 60% trắc nghiệm và 40% tự luận, thời gian làm bài là 120 phút. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm để các học sinh có thể tự kiểm tra và rút kinh nghiệm sau khi kết thúc kỳ thi.

Trích dẫn một số câu hỏi từ đề thi:

1) Với cây cau cao 7m, hỏi để hái buồn cau xuống, chiếc thang tre dài 8m cần được đặt như thế nào để góc giữa thang tre và mặt đất là bao nhiêu?

2) Trong tam giác vuông ABC, AB = 6cm và AC = 6,4cm. Tính độ dài BC và AC. Hãy chứng minh rằng 3DE = BC và BD * CE.

3) Trong đường tròn O, 2AB là một dây có độ dài bằng 2. Hỏi khoảng cách từ tâm O đến AB có giá trị bao nhiêu?

Đề thi Học sinh giỏi Toán lớp 9 cấp huyện năm học 2022-2023 không chỉ là cơ hội để các học sinh thử thách kiến thức mà còn là dịp để rèn luyện kỹ năng giải quyết vấn đề và logic. Chúc tất cả các thí sinh tham gia kỳ thi thành công!

Nguồn: sytu.vn

Đọc Sách

Đề HSG Toán 9 cấp huyện năm 2018 - 2019 phòng GDĐT Yên Lạc - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề HSG Toán 9 cấp huyện năm 2018 – 2019 phòng GD&ĐT Yên Lạc – Vĩnh Phúc; đề thi có đáp án + lời giải chi tiết + thang điểm. Trích dẫn đề HSG Toán 9 cấp huyện năm 2018 – 2019 phòng GD&ĐT Yên Lạc – Vĩnh Phúc : + Cho các số thực x, y thoả mãn. Chứng minh rằng tích xy là một số không dương. + Cho tam giác ABC vuông tại A. Các đường trung tuyến AD và BE vuông góc với nhau tại G. Biết AB 6 cm, tính cạnh huyền BC. + Tổng của n số nguyên dương không nhất thiết phân biệt là 100. Tổng của 7 số trong số chúng nhỏ hơn 15. Tìm giá trị nhỏ nhất của n?
Đề học sinh giỏi huyện Toán 9 năm 2018 - 2019 phòng GDĐT Nậm Nhùn - Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2018 – 2019 phòng GD&ĐT Nậm Nhùn – Lai Châu; kỳ thi được diễn ra vào ngày 13 tháng 01 năm 2019.
Đề học sinh giỏi Toán 9 cấp trường năm 2017 - 2018 trường THCS Sông Trí - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát đội tuyển học sinh giỏi môn Toán 9 cấp trường năm học 2017 – 2018 trường THCS Sông Trí, thị xã Kỳ Anh, tỉnh Hà Tĩnh; đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề học sinh giỏi Toán 9 cấp trường năm 2017 – 2018 trường THCS Sông Trí – Hà Tĩnh : + Giả sử D là một điểm nằm trong tam giác nhọn ABC sao cho 0 ADB ACB 90 và AC BD AD BC. Chứng minh rằng 2 AB CD AC BD. + Cho tam giác ABC. Biết rằng tồn tại hai điểm M N lần lượt trên các cạnh AB BC sao cho 2 BM BN AM CN và BNM ANC. Chứng minh rằng tam giác ABC vuông? + Cho tam giác ABC vuông tại A, đường cao AH, đường phân giác AD. Biết BH = 63 cm; CH = 112 cm. Tính HD.
Đề khảo sát HSG lần 1 Toán 9 năm 2017 - 2018 trường THCS Thanh Lãng - Vĩnh Phúc
Đề khảo sát HSG lần 1 Toán 9 năm 2017 – 2018 trường THCS Thanh Lãng – Vĩnh Phúc gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát HSG lần 1 Toán 9 năm 2017 – 2018 trường THCS Thanh Lãng – Vĩnh Phúc : + Cho đa thức P(x) = ax3 + bx2 + cx + d với a, b, c, d là các hệ số nguyên. Chứng minh rằng nếu P(x) chia hết cho 5 với mọi giá trị nguyên của x thì các hệ số a, b, c, d đều chia hết cho 5. + Cho ABC nhọn, có ba đường cao AD, BI, CK cắt nhau tại H. Gọi chân các đường vuông góc hạ từ D xuống AB, AC lần lượt là E và F. a) Chứng minh rằng: AE.AB = AF.AC b) Giả sử HD = 1 3 AD. Chứng minh rằng: tanB.tanC = 3 c) Gọi M, N lần lượt là chân đường vuông góc kẻ từ D đến BI và CK. Chứng minh rằng: 4 điểm E, M, N, F thẳng hàng. + Cho a, b, c là 3 số dương thỏa mãn điều kiện 1 1 1 2 a + b + 1 b + c + 1 c + a + 1 Tìm giá trị lớn nhất của tích (a + b)(b + c)(c + a).