Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 9 môn Toán cấp huyện năm 2022 2023 phòng GD ĐT Sơn Động Bắc Giang

Nội dung Đề thi HSG lớp 9 môn Toán cấp huyện năm 2022 2023 phòng GD ĐT Sơn Động Bắc Giang Bản PDF Bài thi Học sinh giỏi Toán cấp huyện lớp 9 năm học 2022-2023 tại phòng Giáo dục và Đào tạo huyện Sơn Động, tỉnh Bắc Giang đã thu hút sự quan tâm của nhiều giáo viên, học sinh và phụ huynh. Đề thi được thiết kế theo cấu trúc 60% trắc nghiệm và 40% tự luận, thời gian làm bài là 120 phút. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm để các học sinh có thể tự kiểm tra và rút kinh nghiệm sau khi kết thúc kỳ thi.

Trích dẫn một số câu hỏi từ đề thi:

1) Với cây cau cao 7m, hỏi để hái buồn cau xuống, chiếc thang tre dài 8m cần được đặt như thế nào để góc giữa thang tre và mặt đất là bao nhiêu?

2) Trong tam giác vuông ABC, AB = 6cm và AC = 6,4cm. Tính độ dài BC và AC. Hãy chứng minh rằng 3DE = BC và BD * CE.

3) Trong đường tròn O, 2AB là một dây có độ dài bằng 2. Hỏi khoảng cách từ tâm O đến AB có giá trị bao nhiêu?

Đề thi Học sinh giỏi Toán lớp 9 cấp huyện năm học 2022-2023 không chỉ là cơ hội để các học sinh thử thách kiến thức mà còn là dịp để rèn luyện kỹ năng giải quyết vấn đề và logic. Chúc tất cả các thí sinh tham gia kỳ thi thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử học sinh giỏi huyện Toán 9 năm 2022 - 2023 THCS Lăng Thành - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử kỳ thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 trường THCS Lăng Thành, tỉnh Nghệ An. Trích dẫn đề thi thử học sinh giỏi huyện Toán 9 năm 2022 – 2023 THCS Lăng Thành – Nghệ An : + Tìm số tự nhiên n để A = 2n + 3n + 4n là một số chính phương. + Cho a, b là các số hữu tỉ thỏa mãn a + b và a.b đều là số nguyên. Chứng minh a và b đều là số nguyên. + Cho đường tròn (O) đường kính AB và điểm C nằm bên ngoài đường tròn sao cho CA và CB lần lượt cắt đường tròn (O) tại điểm thứ hai là D và E. AE cắt BD tại H và CH cắt AB tại F. Chứng minh: a) CED = CAB b) AD.AC = AF.AB c) HE HD HF.
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 - 2022 sở GDĐT Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Gia Lai; kỳ thi được diễn ra vào Chủ Nhật ngày 17 tháng 04 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 – 2022 sở GD&ĐT Gia Lai : + Cho một đa giác có 10 đỉnh như hình vẽ ở bên (bốn đỉnh: A, B, C, D hoặc B, C, D, E hoặc C, D, E, F hoặc … hoặc J, A, B, C được gọi là bốn đỉnh liên tiếp của đa giác). Các đỉnh của đa giác được đánh số một cách tùy ý bởi các số nguyên thuộc tập hợp M = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10} (biết mỗi đỉnh chỉ được đánh bởi một số, các số được đánh ở các đỉnh là khác nhau). Chứng minh rằng ta luôn tìm được 4 đỉnh liên tiếp của đa giác được đánh số thuộc tập hợp M mà tổng các số đó lớn hơn 21. + Cho hình vuông ABCD nội tiếp đường tròn (O;R). Trên cung nhỏ AD lấy điểm E (E không trùng với A và D). Tia EB cắt các đường thẳng AD, AC lần lượt tại I và K. Tia EC cắt các đường thẳng DA, DB lần lượt tại M, N. a) Chứng minh rằng IAN = NBI. b) Khi điểm M ở vị trí trung điểm của AD. Hãy tính độ dài đoạn AE theo R. + Cho số p = n4 – 11n2 + 49 với n thuộc N. Hãy tìm các giá trị của n để p là số nguyên tố.