Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề số phức VD - VDC - Nguyễn Xuân Chung

Tài liệu gồm 61 trang được biên soạn bởi thầy giáo Nguyễn Xuân Chung, phân tích, bình luận và hướng dẫn giải một số dạng toán số phức vận dụng và vận dụng cao (VD & VDC, nâng cao, khó …) thường gặp trong đề thi thử THPT Quốc gia 2020 môn Toán. Các bài toán trong tài liệu được giải bằng nhiều phương pháp, có kết hợp vận dụng máy tính cầm tay Casio / Vinacal. Khái quát nội dung tài liệu chuyên đề số phức VD – VDC – Nguyễn Xuân Chung: PHẦN I : SỐ PHỨC CƠ BẢN. 1. Các câu trích từ đề thi tuyển sinh Đại học – Cao đẳng năm 2012 Nhân dịp mùa thi THPTQG 2020 sắp tới gần, ta thử nhìn nhận về các bài toán số phức thi ĐH – CĐ năm 2012, củng cố kiến thức và kỹ năng giải toán về số phức trong vài năm gần đây, góp phần giúp các em 2K2 đạt kết quả tốt hơn trong kỳ thi. 2. Một số câu trắc nghiệm gần đây 3. Một số bài luyện tập Như vậy trong phần I thì chúng ta ôn tập và cũng cố những kiến thức cơ bản nhất về số phức, đồng thời rèn luyện một số kỹ năng giải toán nhất định, nhìn chung các bài toán ở mức 6 – 7 điểm. PHẦN II : SỐ PHỨC VD – VDC. Qua các ví dụ trong Phần I thì chúng ta đã củng cố tương đối nhiều kiến thức cơ bản và rèn luyện một số kỹ năng giải toán về số phức. Trong Phần II này chúng ta tiếp tục nghiên cứu các bài toán nâng cao về số phức: trong đó liên quan đến khá nhiều kiến thức về hình học véc tơ và tọa độ trong mặt phẳng, ngoài ra cũng cần nhiều kiến thức về các bất đẳng thức Mincopxki và Bunhiacopxki. Trong phần II chúng ta sẽ nghiên cứu các bài toán ở mức 8 – 9 – 10 điểm, có khá nhiều bài toán và có nội dung rộng hơn, bao gồm: + Biểu diễn tập hợp số phức là đường thẳng, đường tròn (nâng cao). + Các bài toán tương đối đơn giản về giá trị lớn nhất, nhỏ nhất. + Các bài toán tính toán (nâng cao). + Các bài toán nâng cao về giá trị lớn nhất, nhỏ nhất. [ads] 1. Biểu diễn tập hợp số phức là đường thẳng hay đường tròn 2. Các bài toán đơn giản tìm giá trị lớn nhất, nhỏ nhất Đối với các bài toán vận dụng tương đối đơn giản về giá trị lớn nhất hay nhỏ nhất thì các em cần có kỹ năng tốt về viết phương trình đường thẳng, đường tròn. 3. Các bài toán tính toán Để thực hiện tính toán thì: + Thông thường ta xem số phức là giao của hai hay nhiều tập hợp biểu diễn số phức đó. + Hoặc các phép biến đổi đại số (giải hệ phương trình). Phép đặt ẩn phụ coi như xuyên suốt cả phần II này, đặc biệt ở phần nâng cao (Mục 4). 4. Các bài toán VDC tìm giá trị lớn nhất, nhỏ nhất Đối với các bài toán vận dụng cao thì các em cần có kỹ năng tốt về biểu diễn tương quan giữa các độ dài đoạn thẳng, nắm vững hơn các kiến thức về ba đường Cônic (Hình học 10). Mặt khác cũng thường xuyên sử dụng các bất đẳng thức Mincopxki và Bunhiacopxki. Ngoài ra các em có thể đại số hóa bài toán để khảo sát hàm số. Tuy nhiên vì thời gian thi trắc nghiệm có hạn nên cũng không phải là các bài toán quá khó, vì vậy các em hãy yên tâm. 5. Các bài luyện tập 6. Phụ lục : Chứng minh công thức tính nhanh khoảng cách từ một điểm đến đường trung trực của đoạn thẳng dạng số phức. Xem thêm : + Trắc nghiệm VD – VDC số phức – Đặng Việt Đông + Tìm giá trị lớn nhất và giá trị nhỏ nhất của môđun số phức + Bài toán GTLN – GTNN của môđun số phức

Nguồn: toanmath.com

Đọc Sách

Chuyên đề cực trị số phức
Tài liệu gồm 60 trang, phân dạng và hướng dẫn giải các bài tập trắc nghiệm vận dụng cao (VDC) chuyên đề cực trị số phức, giúp học sinh chinh phục mức điểm 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. A. MỘT SỐ TÍNH CHẤT CẦN NHỚ 1. Môđun của số phức. 2. Một số quỹ tích nên nhớ. B. MỘT SỐ DẠNG TOÁN THƯỜNG GẶP Dạng 1: Quỹ tích điểm biểu diễn số phức là đường thẳng. Dạng 2: Quỹ tích điểm biểu diễn số phức là đường tròn. Dạng 3: Quỹ tích điểm biểu diễn số phức là Elip. C. BÀI TẬP ÁP DỤNG
Tổng ôn tập TN THPT 2021 môn Toán Số phức
Tài liệu gồm 84 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển tập câu hỏi và bài tập trắc nghiệm chuyên đề số phức, có đáp án và lời giải chi tiết. Các câu hỏi và bài tập được trích từ các đề thi thử tốt nghiệp THPT năm 2021 môn Toán của các trường THPT và sở GD&ĐT trên cả nước, với mục đích giúp các em học sinh rèn luyện, rà soát kiến thức chủ đề Giải tích 12 chương 4, trước khi bước vào kỳ thi tốt nghiệp THPT 2021 môn Toán và các kỳ thi tuyển sinh Đại học – Cao đẳng. Mục lục tài liệu tổng ôn tập TN THPT 2021 môn Toán: Số phức: 1. Mức độ nhận biết: 81 câu. + Câu hỏi và bài tập (Trang 01). + Đáp án và lời giải chi tiết (Trang 08). 2. Mức độ thông hiểu: 75 câu. + Câu hỏi và bài tập (Trang 21). + Đáp án và lời giải chi tiết (Trang 28). 3. Mức độ vận dụng thấp: 42 câu. + Câu hỏi và bài tập (Trang 44). + Đáp án và lời giải chi tiết (Trang 48). 4. Mức độ vận dụng cao: 29 câu. + Câu hỏi và bài tập (Trang 63). + Đáp án và lời giải chi tiết (Trang 67).
Tài liệu tự học chuyên đề số phức - Bùi Đình Thông
Tài liệu gồm 68 trang, được biên soạn bởi thầy giáo Bùi Đình Thông, hướng dẫn học sinh lớp 12 tự học chuyên đề số phức (Giải tích 12 chương 4). Bài 1. Mở đầu về số phức. Bài 2. Phép tính số phức. Bài tập rèn luyện số phức và các tính chất. Bài tập rèn luyện các phép toán số phức. Bài toán quỹ tích (tập hợp điểm). Bài tập rèn luyện tìm tập hợp điểm của số phức. Bài 3. Phương trình bậc hai số phức. Bài tập rèn luyện phương trình bậc hai số phức. Cực trị của số phức. Bài tập rèn luyện cực trị của số phức.
Lý thuyết và bài tập số phức có đáp án - Lư Sĩ Pháp
Tài liệu gồm 45 trang, được biên soạn bởi thầy giáo Lư Sĩ Pháp, tóm tắt lý thuyết, phương pháp giải các dạng toán và tuyển chọn các bài tập tự luận + trắc nghiệm số phức có đáp án, giúp học sinh tham khảo khi học chương trình Giải tích 12 chương 4 (số phức) và ôn thi tốt nghiệp THPT môn Toán. A. KIẾN THỨC CẦN NẮM 1. Số phức. 2. Các phép toán trên số phức. 3. Mối liên hệ giữa z và z‾. 4. Phương trình bậc hai với hệ số thực. 5. Cực trị số phức a. Bất đẳng thức tam giác. b. Công thức trung tuyến. c. Tập hợp điểm. 6. Một số dạng cơ bản tìm giá trị lớn nhất, giá trị nhỏ nhất của |z|. Dạng 1. Cho số phức z thỏa mãn |z – (a + bi)| = R với R > 0. Tìm giá trị nhỏ nhất, lớn nhất của |z|. Dạng 2. Cho số phức z thỏa mãn |z – z1| = r1 với r1 > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z – z2|. Dạng 3. Cho số phức z thỏa mãn |z – z1| + |z – z2| = k với k > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z|. Dạng 4. Cho hai số phức z1 và z2 thỏa mãn z1 + z2 = m + ni và |z1 – z2| = p > 0. Tìm giá trị lớn nhất của P = |z1| + |z2|. B. BÀI TẬP TỰ LUẬN Dạng 1. Tìm số phức, số phức liên hợp, phần thực, phần ảo, môđun của một số phức. Dạng 2. Nhìn vào hệ tọa độ Oxy xác định tọa độ của điểm biểu diễn số phức. Dạng 3. Tìm tọa độ điểm biểu diễn của số phức trong mặt phẳng tọa độ Oxy. Dạng 4. Giải phương trình bậc hai trên tập số phức và vận dụng định lí Vi-ét. C. CÂU HỎI TRẮC NGHIỆM