Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Sơn La

Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Sơn La Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Sơn La Đề thi tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Sơn La Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Sơn La tổ chức là một trong những cột mốc quan trọng trong hành trình học tập của học sinh Sơn La. Đây là bước quan trọng đánh dấu sự hoàn thiện từ khối trung học cơ sở và cũng là căn cứ để xét tuyển vào các trường Trung học Phổ thông trên địa bàn. Một trong những môn thi quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Nội dung của đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Sơn La đã được công bố. Trong đó, có các câu hỏi đa dạng và phong phú, từ những bài toán cơ bản đến những bài toán phức tạp, đòi hỏi sự logic, tư duy và kiến thức sâu rộng. Học sinh cần phải rèn luyện kỹ năng giải bài toán và ôn tập kiến thức một cách chặt chẽ để đạt kết quả cao trong kỳ thi này. Với nội dung đa dạng và phong phú như vậy, đề thi tuyển sinh Toán sở GD&ĐT Sơn La năm 2019 – 2020 đã thu hút được sự quan tâm của đông đảo thầy cô giáo, phụ huynh và học sinh. Việc giải đề này không chỉ giúp học sinh ôn tập kiến thức mà còn phản ánh khả năng giải bài toán, tư duy logic và sự linh hoạt trong tư duy của từng em. Hy vọng rằng những kiến thức và kỹ năng mà các em học sinh có được từ việc ôn tập và giải đề thi tuyển sinh này sẽ giúp họ tự tin và thành công trong kỳ thi sắp tới, từ đó tiến xa trên con đường học tập và phát triển bản thân.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử vào 10 chuyên môn Toán (chuyên) năm 2024 lần 2 trường chuyên ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm 2024 lần 2 trường THPT chuyên ĐHSP Hà Nội, thành phố Hà Nội. Trích dẫn Đề thi thử vào 10 chuyên môn Toán (chuyên) năm 2024 lần 2 trường chuyên ĐHSP Hà Nội : + Cho tam giác nhọn, không cân ABC nội tiếp đường tròn (O), có AD là đường phân giác trong (D thuộc BC). E là một điểm di động trên cạnh AB (E khác A). Đường tròn ngoại tiếp tam giác ADE cắt AC tại điểm thứ hai F (khác A), cắt đường thẳng BC tại điểm thứ hai K (khác D). Chứng minh rằng: a) BE.KC = CF.KB. b) BE + CF không đổi khi E thay đổi trên cạnh AB (khác A) của tam giác ABC. + Thầy giáo ghi lên bảng các số 1!, 2!, 3!, …, 23!. Thầy giáo cho phép bạn Dương xóa đi một hoặc nhiều các số đang có trên bảng. Hỏi bạn Dương phải xóa đi ít nhất bao nhiêu số sao cho tích các số còn lại trên bảng là một số chính phương? Tại sao? (Ở đây, n! là tích của n số nguyên dương đầu tiên).
Đề thi thử vào 10 chuyên môn Toán (chung) năm 2024 lần 2 trường chuyên ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử tuyển sinh vào lớp 10 THPT chuyên môn Toán (chung) năm 2024 lần 2 trường THPT chuyên ĐHSP Hà Nội, thành phố Hà Nội.
Đề thi thử Toán vào lớp 10 lần 3 năm 2024 - 2025 trường THCS Thắng Nhì - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 3 năm học 2024 – 2025 trường THCS Thắng Nhì, thành phố Vũng Tàu, tỉnh Bà Rịa – Vũng Tàu; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 lần 3 năm 2024 – 2025 trường THCS Thắng Nhì – BR VT : + Theo kế hoạch công an tỉnh Bà Rịa – Vũng Tàu điều hai tổ công tác đến làm thẻ Căn cước công dân cho phường Thắng Nhì trên địa bàn thành phố Vũng Tàu. Nếu cả hai tổ cùng làm thì trong 4 ngày hoàn thành công việc. Nếu mỗi tổ làm riêng thì thời gian tổ 1 hoàn thành công việc ít hơn thời gian tổ 2 hoàn thành công việc là 6 ngày. Hỏi nếu làm riêng thì mỗi tổ phải làm trong bao nhiêu ngày để hoàn thành công việc? + Cho đường tròn tâm O. Từ điểm M nằm ngoài (O) kẻ hai tiếp tuyến MC, MD (C; D là các tiếp điểm). Vẽ cát tuyến MAB với đường tròn (A, B thuộc đường tròn và dây AB không đi qua O; A nằm giữa M và B; C thuộc cung nhỏ AB). Gọi I là trung điểm của AB và H là giao điểm của OM và CD. a) Chứng minh tứ giác MIOD nội tiếp được đường tròn. b) Tia DI cắt đường tròn (O) tại G. Chứng minh CGD MID. c) Gọi E là giao điểm của hai đường thẳng CD và OI, S là giao điểm của MI và EH, K là giao điểm của hai đường thẳng OS và ME. Chứng minh MH.MO + EI.EO = ME2. d) Kẻ dây BN song song với CD. Chứng minh ba điểm: A, H, N thẳng hàng.
Đề thi thử Toán vào 10 lần 1 năm 2024 - 2025 trường Lương Ngọc Quyến - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 trường THPT Lương Ngọc Quyến, tỉnh Thái Nguyên; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 lần 1 năm 2024 – 2025 trường Lương Ngọc Quyến – Thái Nguyên : + Một người nông dân trồng hoa trên một mảnh vườn hình chữ nhật có chiều dài hơn chiều rộng 15m. Cuối vụ thu hoạch, bình quân người đó bán được 20.000 đồng tiền hoa trên mỗi mét vuông đất. Tính chiều dài và chiều rộng mảnh vườn đó. Biết tổng số tiền bán hoa cuối vụ từ mảnh vườn, người đó thu được là 252 triệu đồng. + Cho tam giác ABC vuông tại A có AB = 3cm, AC = 4cm. Kẻ đường cao AH. Tính độ dài các đoạn thẳng AH, BH, CH. + Cho đường tròn O1 và O2 tiếp xúc ngoài tại A và một đường thẳng d tiếp xúc với O O 1 2 lần lượt tại B C. a) Tính tổng số đo của hai góc BO O 1 2 và 2 1 CO O. b) Chứng minh rằng tam giác ABC vuông tại A.