Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi thành phố Toán THCS năm 2022 2023 sở GD ĐT Hải Phòng

Nội dung Đề học sinh giỏi thành phố Toán THCS năm 2022 2023 sở GD ĐT Hải Phòng Bản PDF
Chúng tôi hân hạnh giới thiệu đến quý thầy cô giáo và các bạn học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán lớp 9 THCS năm học 2022 - 2023 do Sở Giáo dục và Đào tạo thành phố Hải Phòng tổ chức. Đề thi này bao gồm các câu hỏi thú vị và ý nghĩa, bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm.

Một trong những câu hỏi trong đề thi là về một định lí trong hình học: Cho ∆ABC nhọn không cân tại đỉnh A, nội tiếp đường tròn (O). Kẻ đường cao AH của ∆ ABC H BC. Gọi P Q lần lượt là chân đường vuông góc kẻ từ H đến các đường thẳng AB AC. Câu hỏi đề cập đến việc chứng minh tứ giác BCQP nội tiếp và các bước chứng minh liên quan đến đường thẳng PQ và BC cắt nhau tại M, đường thẳng AM cắt đường tròn (O) tại điểm K.

Đề cập đến các vấn đề khác nhau như tối ưu hóa diện tích hình vuông để chứa 5 hình tròn không chồng lên nhau, hay việc chứng minh một công thức toán học phức tạp.

Đề thi học sinh giỏi Toán lớp 9 thành phố Hải Phòng năm học 2022 - 2023 là cơ hội để các em thể hiện kiến thức và khả năng giải quyết vấn đề của mình. Chúc các em học sinh đạt kết quả cao và phấn đấu trên con đường học tập.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Hậu Giang
Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Hậu Giang Bản PDF - Nội dung bài viết Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022-2023 sở GD&ĐT Hậu Giang Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022-2023 sở GD&ĐT Hậu Giang Sytu xin chào đến các thầy cô và các em học sinh lớp 9! Hôm nay, chúng ta sẽ cùng tìm hiểu về đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Hậu Giang. Đề thi bao gồm các câu hỏi sau: + Bài 1: Cho đa thức \(f(x) = x^4 - 3x^3 + mx + n\) với \(m\) và \(n\) là các số thực. Hãy phân tích đa thức \(P(x) = x^2 - 4x + 3\) thành nhân tử và tìm các giá trị của \(m\) và \(n\) sao cho \(f(x)\) chia hết cho \(P(x)\). + Bài 2: Trong mặt phẳng Oxy, đường thẳng \(y = 2mx + m + 2\) cắt parabol \(y = -x^2\) tại hai điểm phân biệt có hoành độ thỏa mãn. Hãy tìm tất cả các giá trị của tham số \(m\). + Bài 3: Xác định điểm \(D\) sao cho tứ giác \(ABCD\) nội tiếp, điểm \(E\) là điểm cắt giữa \(BC\) và đường tròn có đường kính \(NC\). Chứng minh \(ABN = AEN\), \(NE\) là tia phân giác của góc \(AED\) và ba điểm \(A\), \(B\), \(F\) thẳng hàng nếu \(EN\) cắt \(CD\) tại \(F\). Đây là một đề thi đầy thách thức và đa dạng, hy vọng các em học sinh sẽ rèn luyện và chuẩn bị tốt để vượt qua thử thách này. Chúc các em học tốt và thành công!
Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Kon Tum
Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Kon Tum Bản PDF - Nội dung bài viết Đề thi học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 - 2023 sở GD&ĐT Kon Tum Đề thi học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 - 2023 sở GD&ĐT Kon Tum Sytu xin gửi đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 năm học 2022 – 2023 của Sở Giáo dục và Đào tạo UBND tỉnh Kon Tum. Kỳ thi sẽ diễn ra vào thứ Sáu ngày 03 tháng 03 năm 2023. Chi tiết đề thi bao gồm các câu hỏi như sau: 1. Cho hàm số \( f(x) = (m - 1)x + 3m + 2 \) có đồ thị là đường thẳng. Đường thẳng cắt trục hoành tại điểm M, cắt trục tung tại điểm N (các điểm M, N không trùng với gốc tọa độ O). Tìm giá trị của m để tam giác OMN cân. 2. Hai cửa hàng A và B bán cùng một loại bánh với giá 10000 đồng một cái. Cửa hàng A: Mua 5 cái đầu tiên với giá 10000 đồng/cái, mua 5 cái tiếp theo giảm 4%, từ cái thứ 11 trở đi chỉ trả 72% giá bán. Cửa hàng B: Mua 5 cái được tặng 1 cái. Nếu bạn An có 250000 đồng, hỏi nên chọn cửa hàng nào để mua nhiều bánh hơn? 3. Cho hình vuông ABCD có cạnh bằng a. Vẽ đường tròn tâm D, bán kính DA. Từ điểm M thuộc cạnh AB, vẽ tiếp tuyến MN với đường tròn (D), tiếp tuyến này cắt đoạn BC tại H. Tính chu vi tam giác BMH theo a và xác định vị trí của M để đoạn thẳng MH là nhỏ nhất. Hy vọng đề thi sẽ giúp các em học sinh lớp 9 rèn luyện và củng cố kiến thức môn Toán một cách hiệu quả. Chúc các em thi tốt!
Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tiên Du Bắc Ninh
Nội dung Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tiên Du Bắc Ninh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 huyện Tiên Du năm 2022 - 2023 Đề thi học sinh giỏi Toán lớp 9 huyện Tiên Du năm 2022 - 2023 Chào các thầy cô giáo và các em học sinh lớp 9! Sytu xin giới thiệu đến quý vị đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Tiên Du, tỉnh Bắc Ninh. Đề thi có hình thức 100% tự luận, thời gian là 120 phút (không tính thời gian giao đề). Bài thi bao gồm đề thi, đáp án, lời giải chi tiết và thang điểm chấm. Kỳ thi sẽ diễn ra vào ngày 22 tháng 02 năm 2023. Dưới đây là một số câu hỏi trong đề thi: 1. Cho nửa đường tròn tâm O với bán kính R, đường kính AB. Trên nửa mặt phẳng bờ là đường thẳng AB chứa nửa đường tròn, kẻ tiếp tuyến Ax tại A của nửa đường tròn. Xét điểm M thay đổi trên Ax, không trùng với A. Gọi E là điểm đối xứng với A qua OM. Hãy chứng minh rằng ME là một tiếp tuyến của nửa đường tròn (O). 2. Cho hai đường thẳng d: mx + y = d và d': x + my = d' với m, d', d cố định. Chứng minh rằng đường thẳng d1 đi qua điểm A cố định, đường thẳng d2 đi qua điểm B cố định với mọi m. 3. Cho a, b, c là các số nguyên thỏa mãn ab ≡ bc ≡ ca (mod 3). Chứng minh rằng nếu abc ≡ 0 (mod 3) thì abc ≡ 0 (mod 27). Hy vọng rằng đề thi này sẽ giúp các em ôn tập và rèn luyện kỹ năng Toán một cách hiệu quả. Chúc các em thành công trong kỳ thi sắp tới!
Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Ninh Bình
Nội dung Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Ninh Bình Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 cấp tỉnh Ninh Bình năm 2022-2023 Đề thi học sinh giỏi Toán lớp 9 cấp tỉnh Ninh Bình năm 2022-2023 Xin chào quý thầy cô giáo và các em học sinh lớp 9! Đây là đề thi chọn học sinh giỏi môn Toán lớp 9 THCS cấp tỉnh Ninh Bình cho năm học 2022-2023 do Sở Giáo dục và Đào tạo tỉnh Ninh Bình tổ chức. Kỳ thi sẽ diễn ra vào ngày 14 tháng 02 năm 2023. Đề thi bao gồm các bài toán sau: Cho phương trình \( (m + 1)x^3 + (3m - 1)x^2 - x - 4m + 1 = 0 \) (với m là tham số). Hãy tìm giá trị của m để phương trình đã cho có 3 nghiệm phân biệt. Giả sử có 3 điểm phân biệt cố định A, B, C nằm trên cùng một đường thẳng. Gọi I là trung điểm của đoạn thẳng BC. Được biết đường tròn tâm O luôn đi qua B và C. Kẻ các tiếp tuyến AM, AN với đường tròn tâm O (M, N là các tiếp điểm). Chứng minh rằng tứ giác OMNI nội tiếp và \( AH \cdot OA = AN^2 \). Đề bài thứ ba liên quan đến việc điền các số vào bảng ô vuông kích thước 10x10 và xác định các tổng trên các hàng, cột và đường chéo của bảng. Hỏi tổng của các số trên bảng có thể nhận bao nhiêu giá trị và chứng minh rằng có hai tổng bằng nhau. Trong bài toán cuối cùng, ta cần điền các số nguyên dương vào các ô vuông sao cho hai số ở hai ô chung cạnh hoặc chung đỉnh là hai số nguyên tố cùng nhau. Chứng minh rằng trong bảng đã cho tồn tại một số được điền ít nhất 17 lần. Hy vọng rằng các em học sinh sẽ rèn luyện và tự tin tham gia kỳ thi học sinh giỏi Toán lớp 9 cấp tỉnh Ninh Bình này. Chúc quý thầy cô và các em đạt kết quả cao trong kỳ thi sắp tới!