Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số phương pháp giải phương trình nghiệm nguyên Tạ Văn Đức

Nội dung Một số phương pháp giải phương trình nghiệm nguyên Tạ Văn Đức Bản PDF - Nội dung bài viết Một số phương pháp giải phương trình nghiệm nguyênPhương pháp 1: Áp dụng tính chia hếtPhương pháp 2: Phương pháp lựa chọn ModuloPhương pháp 3: Sử dụng bất đẳng thứcPhương pháp 4: Phương pháp chặnPhương pháp 5: Sử dụng tính chất của số chính phươngPhương pháp 6: Phương pháp lùi vô hạnPhương pháp 7: Nguyên tắc cực hạnPhương pháp 8: Sử dụng mệnh đề cơ bản của số học Một số phương pháp giải phương trình nghiệm nguyên Trong môn Toán cấp Trung học Cơ sở, bài toán phương trình nghiệm nguyên là một chủ đề khá hay nhưng cũng khá khó đối với học sinh, dạng toán này thường xuyên xuất hiện trong các đề thi học sinh giỏi Toán lớp 8 – lớp 9. Để hỗ trợ việc bồi dưỡng học sinh giỏi Toán lớp 8 và Toán lớp 9, thầy Tạ Văn Đức đã biên soạn tài liệu giới thiệu một số phương pháp giải phương trình nghiệm nguyên. Dưới đây là khái quát về nội dung của tài liệu một số phương pháp giải phương trình nghiệm nguyên: Phương pháp 1: Áp dụng tính chia hết Phương trình dạng ax + by = c. Đưa về phương trình ước số. Phương pháp 2: Phương pháp lựa chọn Modulo Xét số dư hai vế. Sử dụng số dư để chỉ ra phương trình vô nghiệm. Phương pháp 3: Sử dụng bất đẳng thức Đối với các phương trình mà các biến có vai trò như nhau thì thường dùng phương pháp sắp xếp các biến. Áp dụng bất đẳng thức cổ điển. Áp dụng tính đơn điệu của từng vế. Dùng điều kiện delta ≥ 0 (hoặc delta' ≥ 0) để phương trình bậc hai có nghiệm. Phương pháp 4: Phương pháp chặn Chủ yếu dựa vào hai nhận xét sau: Không tồn tại n thuộc Z thỏa mãn a^2 < n^2 < (a + 1)^2 với a là một số nguyên. Nếu a^2 < n^2 < (a + 2)^2 (với a và n thuộc Z) thì n = a + 1. Phương pháp 5: Sử dụng tính chất của số chính phương Một số tính chất thường được sử dụng: Số chính phương không tận cùng bằng 2, 3, 7, 8. Số chính phương chia hết cho số nguyên tố p thì chia hết cho p^2. ... Phương pháp 6: Phương pháp lùi vô hạn Phương pháp này dùng để chỉ ra rằng ngoài nghiệm tầm thường x = y = z = 0 thì không còn nghiệm nào khác. Phương pháp 7: Nguyên tắc cực hạn Về mặt hình thức khác với phương pháp lùi vô hạn, nhưng về ý tưởng sử dụng thì tương tự, chứng minh phương trình ngoài nghiệm tầm thường không có nghiệm nào khác. Phương pháp 8: Sử dụng mệnh đề cơ bản của số học

Nguồn: sytu.vn

Đọc Sách

Các bài toán chứng minh ba điểm thẳng hàng ba đường thẳng đồng quy
Nội dung Các bài toán chứng minh ba điểm thẳng hàng ba đường thẳng đồng quy Bản PDF - Nội dung bài viết Các bài toán chứng minh ba điểm thẳng hàng ba đường thẳng đồng quy Các bài toán chứng minh ba điểm thẳng hàng ba đường thẳng đồng quy Bộ tài liệu này bao gồm 80 trang, được biên soạn bởi thầy giáo Nguyễn Công Lợi, hướng dẫn phương pháp và chọn lọc các bài toán chứng minh ba điểm thẳng hàng - ba đường thẳng đồng quy. Đây là loại bài toán thường gặp trong các bài toán hình học với nhiều sắc thái và biểu cảm khác nhau.
Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân Hưng
Nội dung Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân Hưng Bản PDF - Nội dung bài viết Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân HưngCHUYÊN ĐỀ 1 – BIỂU THỨC CHỨA CĂN BẬC HAICHUYÊN ĐỀ 2 – HÀM SỐ BẬC NHẤT Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân Hưng Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân Hưng là tài liệu tổng hợp kiến thức cần nhớ, các dạng bài tập và hướng dẫn giải từ cơ bản đến nâng cao của chủ đề Đại số bậc THCS. Tài liệu gồm 141 trang, được biên soạn bởi thầy giáo Vũ Xuân Hưng, giúp học sinh ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. CHUYÊN ĐỀ 1 – BIỂU THỨC CHỨA CĂN BẬC HAI I – KIẾN THỨC CẦN NHỚ: Định nghĩa căn bậc hai. Các công thức vận dụng. Định nghĩa căn bậc ba. Tính chất của căn bậc ba. II – CÁC DẠNG BÀI TẬP CƠ BẢN: Dạng 1: Tìm điều kiện để biểu thức có nghĩa. Dạng 2: Căn bậc hai số học. Dạng 3: Tính giá trị của biểu thức. Dạng 4: Phân tích đa thức thành nhân tử. ... (còn nhiều dạng bài tập khác) III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 2 – HÀM SỐ BẬC NHẤT I – KIẾN THỨC CẦN NHỚ: Hàm số bậc nhất. Khái niệm hàm số bậc nhất. Tính chất. ... II – CÁC DẠNG BÀI TẬP CƠ BẢN: Dạng 1: Xác định hàm số đã cho là hàm đồng biến – nghịch biến. Dạng 2: Vẽ đồ thị của hàm số bậc nhất. ... (còn nhiều dạng bài tập khác) III – BÀI TẬP TỰ LUYỆN. Đồng hành cùng học sinh trong việc ôn tập và chuẩn bị cho kỳ thi tuyển sinh, tài liệu luyện thi của thầy giáo Vũ Xuân Hưng sẽ giúp họ nắm vững kiến thức và rèn luyện kỹ năng giải bài tập một cách hiệu quả.
Các bài toán chứng minh cực trị hình học
Nội dung Các bài toán chứng minh cực trị hình học Bản PDF - Nội dung bài viết Cùng khám phá bài toán chứng minh cực trị hình học! Cùng khám phá bài toán chứng minh cực trị hình học! Tài liệu chứa 50 trang với hướng dẫn chi tiết về cách giải các bài toán chứng minh cực trị hình học, loại dạng toán thường gặp trong các bài tập. Đây sẽ là nguồn thông tin hữu ích giúp bạn nắm vững phương pháp giải và áp dụng chúng một cách hiệu quả.
Bài toán chứng minh các đường thẳng đồng quy
Nội dung Bài toán chứng minh các đường thẳng đồng quy Bản PDF - Nội dung bài viết Bài toán chứng minh các đường thẳng đồng quy trong toán học Bài toán chứng minh các đường thẳng đồng quy trong toán học Trong tài liệu này bao gồm 16 trang với hướng dẫn cụ thể về phương pháp giải bài toán chứng minh các đường thẳng đồng quy. Đây là dạng bài toán thường gặp trong các bài toán hình học. Bài toán này thường đưa ra các điều kiện của các đường thẳng và yêu cầu chúng ta chứng minh rằng các đường thẳng đó đồng quy. Qua việc áp dụng các quy tắc và định lý liên quan, chúng ta có thể dễ dàng chứng minh được tính đồng quy của các đường thẳng đó. Với tài liệu này, bạn sẽ học được cách tiếp cận bài toán chứng minh các đường thẳng đồng quy một cách logic và cụ thể, từ đó giúp bạn nắm vững kiến thức và kỹ năng cần thiết trong việc giải các dạng bài toán này.