Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 9 môn Toán năm 2022 2023 trường THPT chuyên Lam Sơn Thanh Hóa

Nội dung Đề HSG lớp 9 môn Toán năm 2022 2023 trường THPT chuyên Lam Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề Thi Học Sinh Giỏi Toán Lớp 9 Trường THPT Chuyên Lam Sơn Thanh Hóa Đề Thi Học Sinh Giỏi Toán Lớp 9 Trường THPT Chuyên Lam Sơn Thanh Hóa Xin chào quý thầy, cô và các em học sinh lớp 9! Hôm nay Sytu xin giới thiệu đến các bạn đề thi khảo sát chất lượng học sinh giỏi môn Toán lớp 9 năm học 2022 - 2023 của trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 27 tháng 11 năm 2022. Trích dẫn một số câu hỏi trong đề: 1. Hai số nguyên dương a, b được gọi là "cân bằng" nếu hai số này có cùng tập ước nguyên tố. Tìm tất cả các số nguyên dương n sao cho n và n + 6 là hai số "cân bằng" và n chia hết cho 4. 2. Cho đường tròn (O;R), đường kính AB cố định. Một điểm C di chuyển trên (O) (C khác A, B). Gọi I là tâm đường tròn nội tiếp tam giác ABC. Vẽ CH vuông góc với AB tại H. Hãy chứng minh một số tính chất của tam giác và đường tròn trong trường hợp này. 3. Một số câu hỏi khác liên quan đến vị trí của điểm C trên đường tròn, tìm điểm E trên AB để diện tích tam giác CEF lớn nhất, và chứng minh các mối quan hệ giữa các điểm và đường thẳng trong tam giác AHC. Hy vọng bài viết trên sẽ giúp các bạn ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các bạn học tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Phú Yên
Ngày 30 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Phú Yên tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2020 – 2021. Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Phú Yên gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Đắk Lắk
Ngày 30 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Đắk Lắk tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2020 – 2021. Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Đắk Lắk gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi HSG tỉnh Toán 9 năm học 2020 - 2021 sở GDĐT Quảng Bình
Đề thi HSG tỉnh Toán 9 năm học 2020 – 2021 sở GD&ĐT Quảng Bình gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có đáp án và lời giải chi tiết, kỳ thi được tổ chức vào ngày 08 tháng 12 năm 2020. Trích dẫn đề thi HSG tỉnh Toán 9 năm học 2020 – 2021 sở GD&ĐT Quảng Bình : + Số nguyên dương n được gọi là số điều hòa nếu tổng các bình phương của các ước dương của nó (kể cả 1 và n) bằng (n + 3)^2. Chứng minh rằng nếu pq (với p và q là các số nguyên tố khác nhau) là số điều hòa thì pq + 2 là số chính phương. + Trong mặt phẳng tọa độ Oxy, cho đường thẳng đi qua điểm A(1;4) và cắt các tia Ox, Oy lần lượt tại B và C (khác O). a. Viết phương trình đường thẳng (d) sao cho biểu thức OA + OB + OC đạt giá trị nhỏ nhất. b. Tính giá trị lớn nhất của biểu thức P = OB.OC/BC. + Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn.
Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Bình Định
Ngày 18 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 năm học 2020 – 2021. Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Bình Định gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Bình Định : + Cho nửa đường tròn tâm O đường kính AB, trên nửa đường tròn (O) lấy điểm C sao cho cung BC nhỏ hơn cung AC, qua C dựng tiếp tuyến với đường tròn (O) cắt AB tại D. Kẻ CH vuông góc với AB (H thuộc AB), kẻ BK vuông góc với CD (K thuộc CD); CH cắt BK tại E. a) Chứng minh BK + BD < EC. b) Chứng minh BH.AD = AH.BD. + Cho tam giác ABC vuông cân tại A và M là điểm di động trên BC (M khác B và C). Hình chiếu của M lên AB, AC lần lượt là H và K. Gọi I là giao điểm của BK và CH. Chứng minh rằng đường thẳng IM luôn đi qua một điểm cố định. + Cho 69 số nguyên dương phân biệt không vượt quá 100. Chứng minh rằng có thể chọn ra từ 69 số đó 4 số sao cho trong chúng có 1 số bằng tổng của 3 số còn lại.