Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán THCS năm 2022 2023 phòng GD ĐT Lương Sơn Hòa Bình

Nội dung Đề học sinh giỏi Toán THCS năm 2022 2023 phòng GD ĐT Lương Sơn Hòa Bình Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi Toán THCS năm 2022-2023 phòng GD&ĐT Lương Sơn Hòa Bình Đề thi chọn học sinh giỏi Toán THCS năm 2022-2023 phòng GD&ĐT Lương Sơn Hòa Bình Chào quý thầy cô giáo và các em học sinh lớp 9, mùa thi học sinh giỏi môn Toán cấp THCS năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Lương Sơn, tỉnh Hòa Bình đã sắp đến. Kỳ thi sẽ diễn ra vào ngày ... tháng 02 năm 2023. Dưới đây là một số câu hỏi trích từ Đề học sinh giỏi Toán THCS năm 2022-2023 do phòng GD&ĐT Lương Sơn - Hòa Bình ra: 1. Có hai can đựng dầu, can thứ nhất đang chứa 48 lít và can thứ hai đang chứa 32 lít. Nếu rót từ can thứ nhất sang cho đầy can thứ hai thì lượng dầu trong can thứ nhất chỉ còn lại một nửa thể tích của nó. Nếu rót từ can thứ hai sang cho đầy can thứ nhất thì lượng dầu trong can thứ hai chỉ còn lại một phần ba thể tích của nó. Hãy tính thể tích của mỗi can. 2. Cho đường thẳng y = (m - 2)x - 2m + 1: - Chứng minh rằng đường thẳng này luôn đi qua một điểm cố định với mọi giá trị của m. - Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng có giá trị lớn nhất. - Tìm m để đường thẳng tạo với các trục tọa độ tam giác có diện tích bằng 1/2. 3. Đoạn thẳng AB. Trên nửa mặt phẳng bờ AB, vẽ nửa đường tròn đường kính AB và các tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn này, kẻ tiếp tuyến cắt Ax, By tại C và D. Gọi N là giao điểm của AD và BC. Hãy: - Chứng minh rằng MN vuông góc với AB. - Chứng minh rằng AC = CE. - Chứng minh rằng BM.BE = AK.AD. Hy vọng rằng các em có thể làm tốt bài thi và đạt kết quả cao trong kỳ thi sắp tới. Chúc quý thầy cô giáo và các em học sinh lớp 9 luôn thành công và nỗ lực trong hành trình học tập của mình!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 cấp quận năm 2023 - 2024 phòng GDĐT Tây Hồ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp quận năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND quận Tây Hồ, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 22 tháng 11 năm 2023.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Đức Phổ - Quảng Ngãi
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thị xã Đức Phổ, tỉnh Quảng Ngãi. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Đức Phổ – Quảng Ngãi : + Tìm hai số nguyên tố, sao cho tổng và hiệu của chúng đều là số nguyên tố. + Cho hình chữ nhật ABCD. Gọi M là trung điểm cạnh CD và N là một điểm trên đường chéo AC sao cho BNM = 90°. Gọi F là điểm đối xứng của A qua N. Chứng minh FB vuông góc với AC. + Cho tam giác ABC vuông tại A. Từ trung điểm E của cạnh AC kẻ EF vuông góc với BC (F thuộc BC). AF và BE cắt nhau tại O. a) Chứng minh AF = BE.cosC. b) Biết BC = 10cm, sinC = 0,6. Tính diện tích tứ giác ABFE. c) Tính sinAOB.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 trường THCS Đặng Thai Mai - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra học sinh giỏi môn Toán 9 năm học 2023 – 2024 trường THCS Đặng Thai Mai, thành phố Vinh, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 trường THCS Đặng Thai Mai – Nghệ An : + Cho hai số nguyên dương a, b thỏa mãn a > b và a2 + b2 + 1 = 2(ab + a + b). Chứng minh a, b là hai số chính phương liên tiếp. + Cho tam giác nhọn ABC đường cao AH. Gọi E, F là các điểm lần lượt thuộc các tia HC, HB sao cho EAB = FAC = 90°. a) Chứng minh HB HF FB HC HE CE. b) Gọi P thuộc đoạn thẳng AH (P khác A; P khác H). Trên tia đối của tia PE lấy điểm M sao cho BM = BA. Trên tia đối của tia PF lấy N sao cho CN = CA. Qua C vẽ đường thẳng vuông góc với PF cắt đường thẳng AH tại K. Chứng minh BP vuông góc KE. c) Các đường thẳng BM, CN cắt nhau tại S. Chứng minh SM = SN. + Cho năm số nguyên dương đôi một phân biệt sao cho mỗi số trong chúng không có ước nguyên tố nào khác 2 và 3. Chứng minh rằng trong năm số đó tồn tại hai số mà tích của chúng là một số chính phương.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Thạch Thất - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Thạch Thất, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Thạch Thất – Hà Nội : + Cho điểm M di động trên đoạn thẳng AB M AB. Trên cùng một nửa mặt phẳng bờ AB vẽ các hình vuông AMCD, BMEF và giao điểm hai đường chéo mỗi hình vuông lần lượt là O, O’. Gọi H là giao điểm của AE và BC. 1/ Chứng minh rằng: AE BC. 2/ Gọi I là giao của AC và BE. Chứng minh I là trung điểm của đoạn thẳng DF và ba điểm H, D, F thẳng hàng. 3/ Chứng minh rằng đường thẳng DF luôn đi qua một điểm cố định khi điểm M di động trên đoạn thẳng AB. + Cho tam giác đều ABC, điểm M nằm trong tam giác ABC sao cho AM2 = BM2 + CM2. Tính số đo góc BMC?