Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 10 môn Toán năm 2018 2019 trường Phùng Khắc Khoan Hà Nội

Nội dung Đề thi HSG lớp 10 môn Toán năm 2018 2019 trường Phùng Khắc Khoan Hà Nội Bản PDF - Nội dung bài viết Đề thi HSG lớp 10 môn Toán trường Phùng Khắc Khoan Hà Nội Đề thi HSG lớp 10 môn Toán trường Phùng Khắc Khoan Hà Nội Để tìm ra các em học sinh lớp 10 có năng khiếu và thành tích xuất sắc trong môn Toán, trường THPT Phùng Khắc Khoan đã tổ chức kỳ thi chọn học sinh giỏi cấp trường. Đề thi HSG Toán lớp 10 năm 2018 – 2019 của trường gồm 6 bài toán được biên soạn theo hình thức tự luận. Thời gian làm bài là 150 phút, không tính thời gian giám thị coi thi phát đề. Đề thi cung cấp lời giải chi tiết và thang chấm điểm cho từng bài toán. Trích dẫn đề thi HSG Toán lớp 10 năm 2018 – 2019 trường Phùng Khắc Khoan Hà Nội: + Bài toán 1: Tìm m để đường thẳng y = -2x – m cắt đồ thị của hàm số y = x^2 + x – 1 tạo ra hai điểm phân biệt A, B sao cho tam giác OAB vuông tại gốc tọa độ O. + Bài toán 2: Xác định hệ thức liên hệ giữa cạnh AB và AC của tam giác ABC để AM và CN vuông góc với nhau, với điều kiện MC = -2MB và NA = -1/2.NB. + Bài toán 3: Tính giá trị của tanB trong tam giác ABC có cạnh BC = a, CA = b, BA = c và diện tích S = b^2 - (a - c)^2.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG tỉnh Toán 10 THPT năm 2017 - 2018 sở GD và ĐT Hải Dương
Đề thi chọn HSG tỉnh Toán 10 THPT năm 2017 – 2018 sở GD và ĐT Hải Dương gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 180 phút, nội dung đề gồm các phần: hàm số và đồ thị, phương trình – bất phương trình – hệ phương trình, vectơ, tích vô hướng của hai vectơ và ứng dụng, bài toán tối ưu, min – max, kỳ thi được diễn ra vào ngày 04/04/2018, đề thi HSG Toán 10 có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán 10 : + Cho tam giác ABC có AB = 6, BC = 7, CA = 5. Gọi M là điểm thuộc cạnh AB sao cho AM = 2MB và N là điểm thuộc AC sao cho vtAN = k.vtAC (k ∈ R). Tìm k sao cho đường thẳng CM vuông góc với đường thẳng BN. + Trong mặt phẳng toạ độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng AB là x – 2y + 1 = 0. Biết phương trình đường thẳng BD là x – 7y + 14 = 0 và đường thẳng AC đi qua điểm M(2,1). Tìm toạ độ các đỉnh của hình chữ nhật. [ads] + Một xưởng sản xuất có hai máy, sản xuất ra hai loại sản phẩm I và II. Một tấn sản phẩm loại I lãi 2 triệu đồng, một tấn sản phẩm loại II lãi 1,6 triệu đồng. Để sản xuất 1 tấn sản phẩm loại I cần máy thứ nhất làm việc trong 3 giờ và máy thứ hai làm việc trong 1 giờ. Để sản xuất 1 tấn sản phẩm loại II cần máy thứ nhất làm việc trong 1 giờ và máy thứ hai làm việc trong 1 giờ. Mỗi máy không đồng thời làm hai loại sản phẩm cùng lúc. Một ngày máy thứ nhất làm việc không quá 6 giờ, máy thứ hai làm việc không quá 4 giờ. Hỏi một ngày nên sản xuất bao nhiêu tấn mỗi loại sản phẩm để tiền lãi lớn nhất?
Đề thi Olympic Toán 10 năm 2017 - 2018 cụm trường Thanh Xuân Cầu Giấy - Hà Nội
Đề thi Olympic Toán 10 năm 2017 – 2018 cụm trường Thanh Xuân & Cầu Giấy – Hà Nội gồm 1 trang với  bài toán tự luận, thời gian làm bài 150 phút, kỳ thi nhằm tuyển chọn các em HSG môn Toán khối 10, đề thi có lời giải chi tiết . Trích dẫn đề thi Olympic Toán 10 năm 2017 – 2018 : + Cho hàm số y = x^2 – 4x + 3 có đồ thị (P). Lập bảng biến thiên của hàm số đã cho và tìm tọa độ giao điểm của đồ thị (P) với trục hoành Ox. + Tìm a, b, c sao cho hàm số y = f(x) = ax^2 + bx + c có đồ thị là một parabol với đỉnh là I(2; 9) và đường parabol đó đi qua điểm A(-1; 0). + Cho tứ giác ABCD có AC ⊥ BD và nội tiếp đường tròn tâm O bán kính R = 1. Đặt diện tích tứ giác ABCD bằng S và AB = a, BC = b, CD = c, DA = d. Chứng minh rằng (ab + cd)(ad + bc) = 8S.
Đề thi chọn HSG Toán 10 năm học 2017 - 2018 cụm Tân Yên - Bắc Giang
Đề thi chọn HSG Toán 10 năm học 2017 – 2018 cụm Tân Yên – Bắc Giang gồm 1 trang với 8 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề), kỳ thi diễn ra vào ngày 28/01/2018, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán 10 : + Cho phương trình x^2 + 2x + 3m – 4 (m là tham số). a) Tìm các giá trị của m để phương trình có hai nghiệm. b) Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn x1^2.x2^2 ≤ x1^2 + x2^2 + 4. c) Tìm các giá trị của m để phương trình có hai nghiệm phân biệt cùng thuộc đoạn [-3; 4]. [ads] + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; 2) và B(4; 3). Tìm tọa độ điểm M nằm trên trục hoành sao cho góc bằng 45 độ. + Cho tam giác đều ABC và các điểm M, N, P thỏa mãn BM = k.BC, CN = 2/3.CA, AP = 4/15.AB. Tìm k để AM vuông góc với PN.