Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn ĐT HSG tỉnh lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Triệu Sơn Thanh Hóa

Nội dung Đề chọn ĐT HSG tỉnh lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Triệu Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề Thi Đội Tuyển Học Sinh Giỏi Toán Lớp 8 - Triệu Sơn, Thanh Hóa Đề Thi Đội Tuyển Học Sinh Giỏi Toán Lớp 8 - Triệu Sơn, Thanh Hóa Xin chào quý thầy cô và các em học sinh lớp 8! Hôm nay, Sytu xin giới thiệu đến mọi người đề chọn đội dự tuyển học sinh giỏi cấp tỉnh môn Toán cho năm học 2022-2023 tại phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào ngày 17 tháng 03 năm 2023, với đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi mẫu từ đề thi: Bài 1: Cho a, b là các số tự nhiên lớn hơn 2 và p là số tự nhiên thỏa mãn \(2^{p-1} = a^b\). Chứng minh rằng p là hợp số. Bài 2: Cho đoạn thẳng AB = 2a. Gọi O là trung điểm của AB. Dựng các tia Ax, By về cùng một phía của AB sao cho Ax, By lần lượt vuông góc với AB. Chứng minh rằng CD = AC = BD. Bài 3: Cho hình thang ABCD có đáy lớn là CD. Gọi O là giao điểm của AC và BD. Một đường thẳng cắt các đoạn AD, OD, OC, BC lần lượt tại M, N, P, Q sao cho MN = NP = PQ. Chứng minh rằng CD = 2AB. Hy vọng mọi người sẽ tham gia và thể hiện tài năng của mình tại kỳ thi sắp tới! Chúc các em học sinh đạt kết quả cao và tiếp tục phát triển trong hành trình học tập của mình!

Nguồn: sytu.vn

Đọc Sách

Đề chọn học sinh giỏi lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Bắc Ninh
Nội dung Đề chọn học sinh giỏi lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Bắc Ninh Bản PDF - Nội dung bài viết Đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh Đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh Ngày 11 tháng 01 năm 2021, phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh đã tổ chức kì thi chọn học sinh giỏi (HSG) cấp thành phố môn Toán lớp 8 năm học 2020 - 2021. Đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh bao gồm 1 trang với 5 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút. Trích dẫn đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh: Tìm dư trong phép chia đa thức f(x) cho x + 1 và x^2 + 1. Tìm các số nguyên x, y thỏa mãn phương trình 5x + 53 = 2xy + 8y^2. Chứng minh một số tính chất của hình vuông ABCD và tam giác BKC. Trên đây là phần đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh. Các bài toán yêu cầu sự tư duy logic, khả năng giải quyết vấn đề và kiến thức sâu rộng về môn Toán. Hãy thử sức và nỗ lực để vượt qua thách thức này!
Đề giao lưu HSG lớp 8 môn Toán năm 2018 2019 phòng GD ĐT Chí Linh Hải Dương
Nội dung Đề giao lưu HSG lớp 8 môn Toán năm 2018 2019 phòng GD ĐT Chí Linh Hải Dương Bản PDF - Nội dung bài viết Đề giao lưu HSG Toán lớp 8 năm 2018 2019 phòng GD ĐT Chí Linh Hải Dương Đề giao lưu HSG Toán lớp 8 năm 2018 2019 phòng GD ĐT Chí Linh Hải Dương Đề giao lưu HSG Toán lớp 8 năm 2018 – 2019 phòng GD&ĐT Chí Linh – Hải Dương được biên soạn theo hình thức tự luận với 05 bài toán, học sinh có 150 phút để làm bài thi. Kỳ thi nhằm giao lưu đội tuyển học sinh giỏi Toán lớp 8 của các trường THCS trên địa bàn thành phố Chí Linh, tỉnh Hải Dương. Trích dẫn đề giao lưu HSG Toán lớp 8 năm 2018 – 2019 phòng GD&ĐT Chí Linh – Hải Dương: + Chứng minh rằng không tồn tại số nguyên n thỏa mãn: (2014^2014 + 1) chia hết cho n^3 + 2012n. + Cho hình vuông ABCD, M là một điểm nằm giữa B và C. Kẻ AN vuông góc với AM, AP vuông góc với MN (N và P thuộc đường thẳng CD). a) Chứng minh tam giác AMN vuông cân. b) Chứng minh rằng: AN^2 = NC.NP. c) Gọi Q là giao điểm của tia AM và tia DC. Chứng minh tổng 1/AM^2 + 1/AQ^2 không đổi khi điểm M thay đổi trên cạnh BC. + Cho các số x, y không âm thay đổi và thỏa mãn x + y = 1. Tìm giá trị lớn nhất của biểu thức: Q = (4x^2 + 3y)(4y^2 + 3x) + 25xy.
Đề Olympic lớp 8 môn Toán năm 2018 2019 phòng GD ĐT TX Thái Hòa Nghệ An
Nội dung Đề Olympic lớp 8 môn Toán năm 2018 2019 phòng GD ĐT TX Thái Hòa Nghệ An Bản PDF - Nội dung bài viết Đề Thi Olympic Toán Lớp 8 Năm 2018 - 2019 Phòng GD&ĐT TX Thái Hòa Nghệ An Đề Thi Olympic Toán Lớp 8 Năm 2018 - 2019 Phòng GD&ĐT TX Thái Hòa Nghệ An Sytu xin gửi đến các em học sinh lớp 8 đề thi Olympic Toán lớp 8 năm 2018 - 2019 của phòng Giáo dục và Đào tạo Thị xã Thái Hòa - Nghệ An. Đề thi này nhằm mục đích giao lưu và tìm kiếm các em học sinh giỏi môn Toán lớp 8 đang học tại các trường THCS tại Thị xã Thái Hòa, tỉnh Nghệ An. Đề thi Olympic Toán lớp 8 năm 2018 - 2019 của phòng Giáo dục và Đào tạo Thị xã Thái Hòa - Nghệ An được thiết kế theo hình thức tự luận với 05 bài toán, thời gian làm bài là 90 phút. Dưới đây là một số câu hỏi trong đề thi: Cho tam giác ABC vuông tại A, có trung tuyến AM và đường cao AH. Trên nửa mặt phẳng bờ BC, kẻ hai tia Ax và Cy vuông góc với BC. Qua A, kẻ đường thẳng vuông góc với AM cắt Bx và Cy lần lượt tại P và Q. Chứng minh: a) AP = BP và AQ = CQ. b) PC đi qua trung điểm I của AH. c) Khi BC cố định, BC = 2a, điểm A chuyển động sao cho BAC = 90°. Tìm vị trí điểm H trên đoạn thẳng BC để diện tích tam giác ABH đạt giá trị lớn nhất, tìm giá trị lớn nhất đó. Cho phân thức: P = (n^3 + 2n^2 - 1)/(n^3 + 2n^2 + 2n + 1). a) Hãy tìm điều kiện xác định và rút gọn phân thức trên. b) Chứng minh rằng nếu n là một số nguyên thì giá trị phân thức tìm được trong câu a luôn là một phân số tối giản. Tìm đa thức f(x) biết: f(x) chia cho x - 2 dư 5; f(x) chia cho x - 3 dư 7; f(x) chia cho (x - 2)(x - 3) được thương là x^2 - 1 và đa thức dư là đa thức bậc nhất đối với x. Đây là một số câu hỏi thú vị và thách thức trong đề thi Olympic Toán lớp 8 năm 2018 - 2019 của phòng Giáo dục và Đào tạo Thị xã Thái Hòa - Nghệ An. Chúc các em học sinh lớp 8 tham gia đề thi này đạt kết quả cao và có trải nghiệm học tập thú vị!
Đề học sinh giỏi huyện lớp 8 môn Toán năm 2018 2019 phòng GD ĐT Nho Quan Ninh Bình
Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2018 2019 phòng GD ĐT Nho Quan Ninh Bình Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 8 môn Toán năm 2018-2019 phòng GD&ĐT Nho Quan Ninh Bình Đề học sinh giỏi lớp 8 môn Toán năm 2018-2019 phòng GD&ĐT Nho Quan Ninh Bình Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh đề học sinh giỏi huyện môn Toán lớp 8 năm 2018 - 2019 do phòng GD&ĐT Nho Quan - Ninh Bình tổ chức. Đề thi bao gồm đầy đủ đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Hy vọng đây sẽ là tài liệu hữu ích giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới.