Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát đợt 3 lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Kim Thành Hải Dương

Nội dung Đề khảo sát đợt 3 lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Kim Thành Hải Dương Bản PDF - Nội dung bài viết Đề khảo sát đợt 3 lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Kim Thành Hải Dương Đề khảo sát đợt 3 lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Kim Thành Hải Dương Sytu xin giới thiệu đến các em học sinh khối lớp 9 đề khảo sát đợt 3 Toán lớp 9 năm 2018 - 2019 phòng GD&ĐT Kim Thành - Hải Dương. Đề này có cấu trúc giống với một đề thi tuyển sinh vào lớp 10 môn Toán, nhằm giúp các em học sinh lớp 9 rèn luyện và chuẩn bị cho kỳ thi quan trọng sắp tới. Đề khảo sát đợt 3 Toán lớp 9 năm 2018 - 2019 phòng GD&ĐT Kim Thành - Hải Dương gồm 01 trang với 05 bài toán dạng đề tự luận, thời gian làm bài là 120 phút. Trích dẫn một số câu hỏi trong đề khảo sát: Cho phương trình \(x^2 - 2mx + m^2 - m + 1 = 0\). Tìm \(m\) để phương trình có 2 nghiệm \(x_1, x_2\) thỏa mãn: \(x_1^2 + 2mx_2 = 9\). Khoảng cách giữa hai bến sống A và B là 50km. Một ca nô đi từ bến A đến bến B, nghỉ 20 phút ở bến B rồi quay lại bến A. Tính vận tốc riêng của ca nô, biết vận tốc của dòng nước là 4km/h. Từ điểm A nằm ngoài đường tròn (O;R), vẽ hai tiếp tuyến AB, AC và cát tuyến AMN sao cho cung MBN nhỏ hơn cung MCN. Chứng minh rằng: a) Bốn điểm B, H, O, C cùng nằm trên một đường tròn. b) \(R^2 = OH \times OL\). c) \(INC = ANB\). Hy vọng rằng đề khảo sát này sẽ giúp các em học sinh lớp 9 nắm vững kiến thức và chuẩn bị tốt cho các kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra kiến thức Toán 9 đợt 1 năm 2021 trường chuyên KHTN - Hà Nội (Vòng 2)
Đề kiểm tra kiến thức Toán 9 đợt 1 năm 2021 trường chuyên KHTN – Hà Nội (Vòng 2) gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 150 phút; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2021.
Đề khảo sát Toán 9 năm 2020 - 2021 trường Hoàng Hoa Thám - Hà Nội
Đề khảo sát chất lượng Toán 9 năm học 2020 – 2021 trường THCS Hoàng Hoa Thám – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian học sinh làm bài thi là 90 phút.
Đề khảo sát Toán 9 lần 3 năm 2020 - 2021 trường THCS Tam Hồng - Vĩnh Phúc
Đề khảo sát Toán 9 lần 3 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc gồm 04 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề khảo sát Toán 9 lần 3 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc : + Cho đường tròn (O, 3cm) và đường tròn (O’, 4cm). Biết độ dài đoạn nối tâm OO’ = 6cm. Khẳng định nào sau đây đúng? A. Hai đường tròn (O) và (O’) tiếp xúc nhau. B. Hai đường tròn (O) và (O’) cắt nhau. C. Hai đường tròn (O) và (O’) ở ngoài nhau. D. Đường tròn (O’) đựng đường tròn (O). + Cho hai đường tròn (O), (O’) tiếp xúc ngoài tại A. Gọi AB là đường kính của đường tròn (O), AC là đường kính của đường tròn (O’), DE là tiếp tuyến chung của hai đường tròn. K là giao điểm của BD và CE. a) Tính số đo DAE. b) Tứ giác ADKE là hình gì? Vì sao? c) Chứng minh AK là tiếp tuyến chung của 2 đường tròn (O) và (O’). d) Gọi M là trung điểm của BC. Chứng minh MK DE. + Cho hàm số bậc nhất: y = (m – 1)x + 1 (m là tham số). a) Tìm m để hàm số nghịch biến trên R. b) Vẽ đồ thị hàm số khi m = -1. c) Tìm m để đồ thị của hàm số đã cho cắt đường thẳng y = x -3 tại điểm có hoành độ bằng -2.
Đề khảo sát Toán 9 lần 2 năm 2020 - 2021 trường THCS Thanh Xuân - Hà Nội
Đề khảo sát Toán 9 lần 2 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề khảo sát Toán 9 lần 2 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội : + Một máy bay cất cánh theo phương có góc nghiêng là 23°. Hỏi muốn đạt độ cao là 2500m, máy bay phải bay một đoạn đường là bao nhiêu mét? (làm tròn đến mét). + Cho tam giác đều ABC nội tiếp đường tròn tâm O. Trên cạnh BC lấy điểm N, gọi E và F theo thứ tự là hình chiếu của N lên AB, AC. Gọi D là trung điểm của ВC. a) Chứng minh rằng bốn điểm A, E, N, F cùng thuộc một đường tròn. Xác định tâm I của đường tròn đó. b) Chứng minh rằng BN.BD = BE.BA. c) Chứng minh rằng ED = FD. d) Gọi H là giao điểm của hai đường chéo của tứ giác EIFD. Chứng minh O, H, N thẳng hàng. + Cho xy + yz + zx = 1. Tìm giá trị nhỏ nhất của P = 3(x2 + y2) + z2.