Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Lương Tài Bắc Ninh

Nội dung Đề HSG cấp huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Lương Tài Bắc Ninh Bản PDF - Nội dung bài viết Đề thi HSG cấp huyện lớp 7 môn Toán năm 2022-2023 phòng GD&ĐT Lương Tài Bắc Ninh Đề thi HSG cấp huyện lớp 7 môn Toán năm 2022-2023 phòng GD&ĐT Lương Tài Bắc Ninh Chào mừng quý thầy cô giáo và các em học sinh lớp 7! Hôm nay, chúng ta sẽ cùng tìm hiểu về đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 7 năm học 2022 - 2023 do phòng Giáo dục và Đào tạo UBND huyện Lương Tài, tỉnh Bắc Ninh tổ chức. Kỳ thi dự kiến diễn ra vào thứ Ba ngày 07 tháng 03 năm 2023. Trích dẫn một số câu hỏi từ đề thi: Câu 1: Nhà trường đã thành lập 3 nhóm học sinh khối 7 để tham gia chăm sóc di tích lịch sử. Biết rằng số học sinh của nhóm I ít hơn tổng số học sinh của nhóm II và nhóm III là 18 học sinh. Hỏi số học sinh của mỗi nhóm là bao nhiêu? Câu 2: Cho a + 1 và 2a + 1 đều là các số chính phương. Chứng minh rằng a chia hết cho 12. Tìm các số tự nhiên a và b thỏa mãn (20a + 7b + 3)(20a + 20a + b) = 803. Câu 3: Trong tam giác vuông cân ABC, vẽ các tia Bx và Cy vuông góc với BC. Gọi D là một điểm nằm giữa B và C. Chứng minh AEB = ADC, tam giác EDF vuông cân và xác định vị trí của điểm D trên BC để độ dài của đoạn EF là nhỏ nhất. Hy vọng rằng các em sẽ tự tin và thành công trong kỳ thi HSG này. Chúc quý thầy cô giáo và các em học sinh lớp 7 luôn thăng tiến và đạt kết quả cao!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 7 năm 2023 - 2024 phòng GDĐT thành phố Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp thành phố môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 10 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn HSG Toán 7 năm 2023 – 2024 phòng GD&ĐT thành phố Bắc Ninh : + Cho tam giác ABC vuông tại A B C 2 kẻ AH vuông góc với BC tại H. Trên tia HC lấy điểm D sao cho HD HB. Từ C kẻ đường thẳng vuông góc với đường thẳng AD tại E. a) Tam giác ABD là tam giác gì? Vì sao? b) Chứng minh rằng DE DH HE AC. c) Gọi K là giao điểm của AH và CE, lấy điểm I bất kỳ thuộc đoạn thẳng HE I H I E. Chứng minh rằng 3 2 AC IA IK IC. + Một số nguyên dương được gọi là số may mắn nếu số đó gấp 99 lần tổng tất cả các chữ số của nó. Tìm số may mắn có bốn chữ số. + Cho tam giác ABC vuông tại A, độ dài cạnh huyền bằng 2015. Trong tam giác ABC lấy 2031121 điểm phân biệt bất kỳ. Chứng minh rằng tồn tại ít nhất hai điểm có khoảng cách không lớn hơn 1.