Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 50 đề ôn thi chọn học sinh giỏi môn Toán có lời giải

Nội dung Tuyển tập 50 đề ôn thi chọn học sinh giỏi môn Toán có lời giải Bản PDF - Nội dung bài viết Tuyển tập 50 đề ôn thi chọn học sinh giỏi môn Toán có lời giải Tuyển tập 50 đề ôn thi chọn học sinh giỏi môn Toán có lời giải Đây là tài liệu gồm 193 trang, chứa đựng 50 đề thi ôn thi chọn học sinh giỏi môn Toán lớp 7, kèm theo đáp án và lời giải chi tiết. Sản phẩm này nhằm giúp học sinh lớp 7 ôn tập, chuẩn bị cho kỳ thi chọn HSG Toán cấp trường, cấp quận / huyện, cấp tỉnh / thành phố. Danh sách các đề thi bao gồm: Đề thi HSG lớp 7 huyện Chương Mỹ năm học 2014 - 2015 Đề thi HSG lớp 7 huyện Tiền Hải năm học 2016 - 2017 Đề thi HSG lớp 7 huyện Quốc Oai năm học 2015 - 2016 Đề thi HSG lớp 7 huyện Thanh Uyên năm học 2017 - 2018 ... (có tổng cộng 50 đề thi) Mỗi đề thi đều đi kèm với đáp án và lời giải chi tiết, giúp học sinh hiểu rõ về cách giải các bài tập và ôn tập hiệu quả hơn. Sản phẩm này là công cụ hữu ích để học sinh lớp 7 rèn luyện và nâng cao kiến thức Toán của mình, chuẩn bị tốt cho kỳ thi HSG sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề chọn HS năng khiếu Toán 7 năm 2023 - 2024 phòng GDĐT Tân Sơn - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh năng khiếu môn Toán 7 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tân Sơn, tỉnh Phú Thọ; đề thi gồm 02 trang, hình thức 40% trắc nghiệm + 60% tự luận, thời gian làm bài 120 phút. Trích dẫn Đề chọn HS năng khiếu Toán 7 năm 2023 – 2024 phòng GD&ĐT Tân Sơn – Phú Thọ : + Cho tam giác ABC cân tại A (AB BC). Gọi N là trung điểm của AC, qua N kẻ đường thẳng vuông góc với AC cắt đường thẳng BC tại M. Trên tia đối của tia AM lấy điểm F sao cho AF BM. a) Chứng minh: MAC ABC. b) Chứng minh: AM CF. c) Lấy điểm D trên cạnh AC điểm E trên cạnh AB sao cho AD AE. + Gieo ngẫu nhiên xúc xắc (6 mặt) một lần. Gọi a b là xác xuất của biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chia hết cho 3”. Giá trị biểu thức 2023a b là? + Cho p là số nguyên tố lớn hơn 3, biết p 2 cũng là số nguyên tố. Chứng minh rằng: p + 7 là bội của 6.
Đề khảo sát HSG Toán 7 năm 2023 - 2024 phòng GDĐT Lệ Thủy - Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chọn học sinh giỏi môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Lệ Thủy, tỉnh Quảng Bình; kỳ thi được diễn ra vào ngày 27 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 7 năm 2023 – 2024 phòng GD&ĐT Lệ Thủy – Quảng Bình : + Ba đội máy cày trên ba cánh đồng có diện tích như nhau. Đội I hoàn thành công việc trong 6 ngày, đội II hoàn thành công việc trong 5 ngày, đội III hoàn thành công việc trong 3 ngày. Biết rằng đội I ít hơn đội II đúng 1 máy cày. Hỏi mỗi đội có bao nhiêu máy cày? + Cho ∆ABC vuông tại A có AB < AC. Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H. a) Chứng minh AH // DE. b) Trên tia DE lấy điểm I sao cho DI = AH. Gọi O là trung điểm của đoạn thẳng DH. Chứng tỏ rằng ba điểm A, O, I thẳng hàng. + Trong giờ học Toán, giáo viên đã yêu cầu học sinh tìm một số có 3 chữ số. Biết rằng nếu tăng chữ số đầu tiên lên n đơn vị và giảm chữ số thứ hai và thứ 3 đi n đơn vị thì ta được số mới gấp n lần số cần tìm. Em hãy giúp các bạn học sinh trả lời yêu cầu của giáo viên. + Gọi S là tập hợp các số tự nhiên có 4 chữ số khác nhau được lập thành từ các chữ số 3; 4; 5; 7; 8; 9. Tính xác suất để số được lấy ra từ tập S là số chẵn?
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Lâm Thao - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Lâm Thao, tỉnh Phú Thọ; đề thi gồm 02 trang, hình thức 30% trắc nghiệm (12 câu – 06 điểm) + 70% tự luận (04 câu – 14 điểm), thời gian làm bài 90 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Lâm Thao – Phú Thọ : + Biết đa thức f x chia cho x + 3 thì dư 10, chia cho x − 2 thì dư 5, chia cho x 3 2 được thương là 2x và còn dư. Tìm đa thức f x và sắp xếp đa thức f x theo lũy thừa giảm dần của biến. + Cho ∆ABC vuông tại A (AB AC). Gọi M là trung điểm của cạnh BC, lấy điểm D thuộc tia đối của tia MA sao cho MD MA. Kẻ BI vuông góc với AD tại I CK vuông góc với AD tại K. a) Chứng minh rằng BI CK. b) Kẻ AH vuông góc với BC tại H MN vuông góc với BD tại N. Chứng minh rằng các đường thẳng CK AH MN đồng quy. c) Chứng minh rằng N là trung điểm của BD. d) Chứng minh rằng BC AB AC AH. + Chứng minh rằng trong 27 số tự nhiên tùy ý luôn tồn tại hai số sao cho tổng hoặc hiệu của chúng chia hết cho 50.
Đề giao lưu HSG Toán 7 năm 2023 - 2024 cụm CM 4 Bá Thước - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi giao lưu học sinh giỏi môn Toán 7 năm học 2023 – 2024 cụm chuyên môn số 4 phòng Giáo dục và Đào tạo huyện Bá Thước, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 31 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 7 năm 2023 – 2024 cụm CM 4 Bá Thước – Thanh Hóa : + Tìm tất cả các cặp số nguyên x y thỏa mãn: 3 10 0 x y. + Cho n là số tự nhiên có hai chữ số. Tìm n biết n + 4 và 2n là các số chính phương. + Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm BC, D là điểm thuộc đoạn thẳng BM (D khác B và M). Kẻ các đường thẳng BH, CI lần lượt vuông góc với đường thẳng AD tại H và I. a) Chứng minh rằng : BH AI. b) Tính góc AIM.