Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 9 môn Toán năm học 2022 2023 sở GD ĐT Hà Nội

Nội dung Đề thi học sinh giỏi lớp 9 môn Toán năm học 2022 2023 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm học 2022 - 2023 sở GDĐT Hà Nội Đề thi học sinh giỏi Toán lớp 9 năm học 2022 - 2023 sở GDĐT Hà Nội Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp thành phố môn Toán năm học 2022 - 2023 sở Giáo dục và Đào tạo thành phố Hà Nội. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 08 tháng 01 năm 2023, với đề thi có đáp án và lời giải chi tiết do các tác giả Võ Quốc Bá Cẩn, Trần Đức Hiếu, Đào Phúc Long thực hiện. Dưới đây là một số câu hỏi trong đề thi: Với a, b, c là các số nguyên dương thỏa mãn điều kiện a + b + c = 16, hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = (a + b)/c + (b + c)/a + (c + a)/b. Cho tam giác ABC vuông tại A (AB < AC) nội tiếp đường tròn (O). Các tiếp tuyến tại A và C của đường tròn (O) cắt nhau tại điểm S. Trên tia đối của tia CA lấy điểm M (M khác C). Chứng minh các điều sau: a) Đường thẳng ME là tiếp tuyến của đường tròn (O). b) EC là tia phân giác của góc FED. c) Góc SDK = 90. Cho đa giác đều A1A2...A2023. Gọi S là tập hợp gồm các trung điểm của các đoạn thẳng AiAj (1 < i < j < 2023) và M là tổng độ dài của tất cả các đoạn thẳng có hai đầu mút là hai điểm thuộc S. Gọi N là tổng độ dài của tất cả các đoạn thẳng AiAj (1 < i < j < 2023). Chứng minh rằng M < 10112N. Hy vọng rằng đề thi sẽ giúp các em ôn tập và rèn luyện kỹ năng Toán một cách hiệu quả. Chúc các em thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 9 cấp huyện năm 2023 - 2024 phòng GDĐT Thanh Ba - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thanh Ba, tỉnh Phú Thọ; đề thi gồm 02 trang với 16 câu trắc nghiệm (08 điểm) và 04 câu tự luận (12 điểm), thời gian làm bài 150 phút (không kể thời gian giao đề); đề thi có đáp án và biểu điểm. Trích dẫn Đề thi HSG Toán 9 cấp huyện năm 2023 – 2024 phòng GD&ĐT Thanh Ba – Phú Thọ : + Bạn Trang có tầm mắt cao 1,52m đứng gần một tòa nhà cao tầng thì thấy đỉnh của tòa nhà với góc nhìn so với phương nằm ngang là 30°. Trang đi về phía tòa nhà 50m thì nhìn thấy đỉnh của tòa nhà với góc nhìn so với phương nằm ngang là 60°. Hỏi chiều cao của tòa nhà là bao nhiêu? (làm tròn kết quả đến chữ số thập phân thứ hai). + Cho hình hộp chữ nhật có diện tích xung quanh 2 80 dm chiều cao bằng 8 dm. Để hình hộp chữ nhật so thể tích lớn nhất thì các kích thước của đáy bể là? + Một lọ thuốc hình trụ được đặt khít trong một hộp giấy hình chữ nhật. Hỏi thể tích của hộp thuốc bằng bao nhiêu phần trăm thể tích của hộp giấy? (lấy π ≈ 3,14).
Đề thi HSG huyện Toán 9 năm 2023 - 2024 phòng GDĐT Đô Lương - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Đô Lương, tỉnh Nghệ An. Trích dẫn Đề thi HSG huyện Toán 9 năm 2023 – 2024 phòng GD&ĐT Đô Lương – Nghệ An : + Cho T = 4n + 1 với n là số tự nhiên lẻ lớn hơn 1. Chứng minh giá trị của T là hợp số. + Cho tam giác ABC vuông tại A đường cao AH. Gọi N là trung điểm của đoạn thẳng BC. Từ N vẽ đường thẳng song song với AB cắt AC tại E. Từ C vẽ đường thẳng song song với AH cắt đường thẳng NE tại K. BK cắt AH tại M. a) Chứng minh BC2 = 4.NE.NK và M là trung điểm của đoạn thẳng AH. b) Các đường phân giác của tam giác AHE cắt nhau tại I, các đường phân giác của tam giác CHE cắt nhau tại Q. đường thẳng IQ cắt các đường thẳng AH và CH thứ tự tại P và F. Chứng minh AH.HC = 2.HP.HF.
Đề thi Olympic Toán 9 năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi Olympic các trường THCS hướng đến kỳ thi học sinh giỏi môn Toán 9 năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 05 tháng 11 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 9 năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Cho A là số nguyên dương và phương trình nghiệm nguyên ax by c với các hệ số nguyên a b c thỏa mãn a b nguyên tố cùng nhau a b A. Chứng minh số nghiệm nguyên x y thỏa mãn điều kiện x A y A của phương trình đã cho không vượt quá 3A b. + Gọi O là giao điểm ba đường phân giác trong của tam giác ABC. Đường thẳng qua O và vuông góc với CO cắt CA tại M cắt CB tại N. Chứng minh rằng: a) Tam giác AOM đồng dạng với tam giác OBN. b) 2 1 AM BN OC AC BC AC BC. + Cạnh BC của tam giác ABC tiếp xúc với đường tròn nội tiếp O của tam giác đó tại điểm D. Chứng minh rằng tâm O của đường tròn này nằm trên đường thẳng đi qua trung điểm của các đoạn thẳng BC và AD.
Đề thi HSG Toán 9 vòng 3 năm 2023 - 2024 trường THCS Tân Thành - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp trường môn Toán 9 vòng 3 năm học 2023 – 2024 trường THCS Tân Thành, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi HSG Toán 9 vòng 3 năm 2023 – 2024 trường THCS Tân Thành – Nghệ An : + Cho tam giác ABC có ba góc nhọn, ba đường cao AK, BD, CE cắt nhau tại H. a) Chứng minh: BH.BD = BC.BK và BH.BD + CH.CE = BC2. b) Chứng minh BH = AC.cotABC. c) Gọi M là trung điểm của BC. Đường thẳng qua A vuông góc với AM cắt đường thẳng BD, CE lần lượt tại Q và P. Chứng minh rằng: MP MQ. + Trong một buổi gặp mặt có 294 người tham gia, những người tham gia, những người quen nhau bắt tay nhau. Biết nếu A bắt tay B thì một trong hai người A và B bắt tay không quá 6 lần. Hỏi có nhiều nhất bao nhiêu cái bắt tay. + Chứng minh A = n(n + 1)(n + 2)(n + 3) không là số chính phương với mọi số tự nhiên n khác 0.