Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giá trị lượng giác và công thức lượng giác Toán 11 KNTTvCS

Tài liệu gồm 73 trang, được biên soạn bởi thầy giáo Lê Bá Bảo, bao gồm lý thuyết và bài tập chủ đề giá trị lượng giác và công thức lượng giác môn Toán 11 Kết Nối Tri Thức Với Cuộc Sống, có đáp án và lời giải chi tiết. Chủ đề 1 : GIÁ TRỊ LƯỢNG GIÁC CỦA GÓC LƯỢNG GIÁC. I. TÓM TẮT LÝ THUYẾT. 1. GÓC LƯỢNG GIÁC. a. Góc lượng giác. b. Số đo góc lượng giác. c. Hệ thức Chasles. 2. ĐƠN VỊ ĐO GÓC VÀ ĐỘ DÀI CUNG TRÒN. a. Đơn vị đô góc và cung tròn. b. Độ dài cung tròn. 3. GIÁ TRỊ LƯỢNG GIÁC CỦA GÓC LƯỢNG GIÁC. a. Đường tròn lượng giác. b. Các giá trị lượng giác của góc lượng giác. c. Giá trị lượng giác của các góc đặc biệt. d. Sử dụng máy tính cầm tay để đổi số đo góc và tìm giá trị lượng giác của góc. 4. QUAN HỆ GIỮA CÁC GIÁ TRỊ LƯỢNG GIÁC. a. Các công thức lượng giác cơ bản. b. Giá trị lượng giác của các góc có liên quan đặc biệt. II. BÀI TẬP MINH HỌA. III. BÀI TẬP TRẮC NGHIỆM. IV. LỜI GIẢI CHI TIẾT. Chủ đề 2 : CÔNG THỨC LƯỢNG GIÁC. I. TÓM TẮT LÝ THUYẾT. 1. CÔNG THỨC CỘNG. 2. CÔNG THỨC NHÂN ĐÔI. 3. CÔNG THỨC BIẾN ĐỔI TÍCH THÀNH TỔNG. 4. CÔNG THỨC BIẾN ĐỔI TỔNG THÀNH TÍCH. 5. MỘT SỐ KẾT QUẢ CẦN LƯU Ý. II. BÀI TẬP MINH HỌA. III. BÀI TẬP TRẮC NGHIỆM. IV. LỜI GIẢI CHI TIẾT.

Nguồn: toanmath.com

Đọc Sách

Một số định hướng giải phương trình lượng giác - Phan Trọng Vĩ
Phương trình lượng giác là vấn đề quan trọng và quen thuộc trong chương trình toán học bậc THPT cũng như trong các đề thi tuyển sinh đại học. Việc giải thành thạo phương trình lượng giác đã trở thành nhiệm vụ và cũng là mong muốn của mọi học sinh. Tuy nhiên, sự phong phú của công thức lượng giác đã gây khó khăn cho học sinh trong việc định hướng lời giải. Nếu định hướng không tốt sẽ dẫn đến biến đổi vòng vo, không giải được hoặc lời giải sẽ dài dòng, không đẹp. Cản trở này phần nào làm nản chí các em học sinh. Một số em đã sợ học và xác định bỏ phần phương trình lượng giác. Với mong muốn giúp học sinh khắc phục khó khăn này, tôi viết sáng kiến kinh nghiệm Một số định hướng giải phương trình lượng giác. Bài viết đưa ra một số định hướng biến đổi phương trình dựa trên những dấu hiệu đặc biệt. Nhờ đó học sinh nhanh chóng tìm ra lời giải của bài toán, tiết kiệm thời gian, tự tin hơn trước các phương trình lượng giác. [ads] Nội dung sáng kiến gồm các nội dung sau : + I. Nhận dạng nhân tử chung dựa vào đẳng thức cơ bản + II. Phương trình bậc 2 đối với sin , cos x x . + III. Nhẩm nghiệm đặc biệt để xác định nhân tử chung + IV. Sử dụng công thức đặc biệt + V. Thay thế hằng số bằng đẳng thức lượng giác Mỗi nội dung đều được trình bày rất công phu. Dấu hiệu của mỗi phương pháp được đưa ra một cách đầy đủ và cụ thể. Các ví dụ cho mỗi nội dung phong phú, đa dạng, có phân tích định hướng thể hiện rõ ràng phương pháp đang áp dụng và có lời giải chi tiết.
Chuyên đề công thức lượng giác - Trần Quốc Nghĩa
Tài liệu gồm 131 trang tổng hợp lý thuyết, phân dạng và hướng dẫn giải các bài toán chuyên đề công thức lượng giác kèm 333 bài tập trắc nghiệm có lời giải chi tiết. Phần 1. CÔNG THỨC LƯỢNG GIÁC – Vấn đề 1. GÓC VÀ CUNG LƯỢNG GIÁC + Dạng 1. Mối liên hệ giữa độ và rad + Dạng 2. Các bài toán liên quan đến góc (cung) lượng giác + Dạng 3. Dựng các ngọn cung lượng giác trên đường tròn LG + Dạng 4. Độ dài của một cung tròn + Dạng 5. Tính các giá trị lượng giác của một cung khi biết một giá trị lượng giác của nó + Dạng 6. Rút gọn – Chứng minh + Dạng 7. Các dạng toán khác – Vấn đề 2. CUNG LIÊN KẾT + Dạng 1. Tính các giá trị lượng giác của một cung bằng cách rút về cung phần tư thứ nhất + Dạng 2. Tính giá trị biểu thức lượng giác + Dạng 3. Rút gọn – Chứng minh + Dạng 4. Hệ thức lượng trong tam giác [ads] – Vấn đề 3. CÔNG THỨC CỘNG + Dạng 1. Sử dụng trục tiếp các công thức để tính hay đơn giản biểu thức + Dạng 2. Chứng minh đẳng thức + Dạng 3. Chứng minh một biểu thức không phụ thuộc đối số + Dạng 4. Hệ thức lượng trong tam giác – Vấn đề 4. CÔNG THỨC NHÂN + Dạng 1. Sử dụng trục tiếp các công thức để tính hay đơn giản biểu thức + Dạng 2. Chứng minh đẳng thức + Dạng 3. Chứng minh một biểu thức không phụ thuộc đối số – Vấn đề 5. CÔNG THỨC BIẾN ĐỔI + Dạng 1. Biến đổi các biểu thức thành tổng + Dạng 2. Biến đổi các biểu thức thành tích + Dạng 3. Áp dụng công thức biến đổi để tính hay rút gọn một biểu thức lượng giác + Dạng 4. Chứng minh đẳng thức lượng giác + Dạng 5. Hệ thức lượng trong tam giác Phần 2. CÂU HỎI TRẮC NGHIỆM
Chuyên đề hàm số lượng giác và phương trình lượng giác - Trần Đình Cư
Tài liệu gồm 136 trang với nội dung gồm: Chương I. Hàm số lượng giác và phương trình lượng giác Bài 1. Hàm số lượng giác A. Cơ sở lý thuyết B. Phương pháp giải bài tập + Dạng 1. Tìm tập xác định của hàm số + Dạng 2. Xét tính chẵn lẻ của hàm số + Dạng 3. Tìm giá trị lớn nhất và và giá trị nhỏ nhất của hàm số lượng giác + Dạng 4. Chứng minh hàm số tuần hoàn và xác định chu kỳ của nó + Dạng 5. Vẽ đồ thị hàm số lượng giác C. Câu hỏi trắc nghiệm [ads] Bài 2. Phương trình lượng giác cơ bản A. Cơ sở lý thuyết B. Phương pháp giải bài tập C. Câu hỏi trắc nghiệm Bài 3. Phương trình lượng giác thường gặp A. Cơ sở lý thuyết và phương pháp giải bài tập + Dạng 1. Phương trình bậc hai đối với hàm số lượng giác + Dạng 2. Phương trình bậc nhất theo sinx và cosx + Dạng 3. Phương trình thuần nhất bậc hai đối với sinx và cosx + Dạng 4. Phương trình đối xứng B. Câu hỏi trắc nghiệm
Phương trình, hệ phương trình và bất phương trình lượng giác - Võ Anh Khoa, Hoàng Bá Minh
Sách gồm 200 trang với các bài tập phương trình lượng giác, hệ phương trình lượng giác và bất phương trình lượng giác được phân dạng thành: A – Sơ lược về hàm lượng giác ngược 1. Một số tính chất cơ bản về hàm lượng giác ngược 2. Bài tập ví dụ về hàm lượng giác ngược B – Phương trình lượng giác 1. Phương trình lượng giác cơ bản 2. Các dạng phương trình lượng giác đưa về phương trình lượng giác cơ bản a. Phương trình lượng giác bậc hai [ads] b. Phương trình lượng giác bậc nhất theo sinx và cosx c. Phương trình lượng giác đối xứng theo sinx và cosx d. Phương trình lượng giác bậc hai thuần nhất đối sinx và cosx e. Các dạng phương trình lượng giác khác + Phương trình lượng giác chứa căn thức + Phương trình lượng giác không mẫu mực + Phương trình lượng giác có chứa tham số C – Hệ phương trình lượng giác D – Bất phương trình lượng giác Tất cả các bài tập đều được giải chi tiết