Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 2020

Nội dung Đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 2020 Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 – 2020, kỳ thi diễn ra trong các ngày 27 và 28 tháng 12 năm 2019. Đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 – 2020 (VMO 2019 – 2020) gồm tổng cộng 07 bài toán: Giới hạn dãy số, Bất đẳng thức, Dãy số nguyên, Hình học phẳng, Hệ phương trình, Hình học phẳng, Tổ hợp. Tổng quan về đề thi, có thể nói đề ngày 1 so với “cùng kỳ năm trước” quả thật rất khác. Các câu hỏi đều có ý a để dẫn dắt gợi mở và thậm chí là cho điểm. Ý tưởng tuy không mới mẻ bằng năm trước nhưng cũng là các thử thách đáng kể với thí sinh. Hầu hết các thí sinh nếu ôn luyện cẩn thận sẽ làm tốt 4 ý a, và có thể làm thêm 1 ý b nào đó nữa. Các ý b có độ khó cũng khá tương đương nhau, tùy vào sở trường của thí sinh, nhưng nhìn chung số bạn làm được trọn vẹn cả bài hình là không nhiều. Ngày thi thứ hai có một bất ngờ lớn khi xuất hiện câu biện luận hệ phương trình cũng như ý tổ hợp a quá nhẹ nhàng. Các câu hệ a và tổ a xem như cho điểm hoàn toàn. Cả câu hình và tổ b cũng ở mức trung bình (xây dựng mô hình khá đơn giản). Tuy nhiên, câu hệ b và tổ c quả thực là thách thức lớn, đòi hỏi phải kỹ năng xử lý tình huống tốt. Nhưng nói chung, đề thi năm nay mới mẻ, đòi hỏi thí sinh vừa phải nắm chắc kiến thức, vừa phải có ít nhiều sáng tạo mới có thể làm trọn vẹn được. Trích dẫn đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 – 2020 : + Cho số nguyên dương n > 1. Ký hiệu T là tập hợp tất cả các bộ có thứ tự (x, y, z) trong đó x, y, z là các số nguyên dương đôi một khác nhau và 1 ≤ x, y, z ≤ 2n. Một tập hợp A các bộ có thứ tự (u, v) được gọi là “liên kết” với T nếu với mỗi phần tử (x, y, z) ∈ T thì {(x, y),(x, z),( y, z)} ∩ A = ∅. a) Tính số phần tử của T. b) Chứng minh rằng tồn tại một tập hợp liên kết với T có đúng 2n(n − 1) phần tử. c) Chứng minh rằng mỗi tập hợp liên kết với T có không ít hơn 2n(n− 1) phần tử. + Cho dãy số (an) xác định bởi a1 = 5, a2 = 13 và an+1 = 5an – 6an-1 với mọi n lớn hơn hoặc bằng 2. a) Chứng minh rằng hai số hạng liên tiếp của dãy trên nguyên tố cùng nhau. b) Chứng minh rằng nếu p là ước nguyên tố của a2^k thì (p – 1) chia hết cho 2^(k + 1) với mọi số tự nhiên k. [ads] + Cho tam giác nhọn không cân ABC nội tiếp đường tròn (O) và có trực tâm H. Gọi D, E, F lần lượt là các điểm đối xứng của O qua các đường thẳng BC, CA, AB. a) Gọi Ha là điểm đối xứng của H qua BC, A’ là điểm đối xứng của A qua O và Oa là tâm của đường tròn ngoại tiếp tam giác BOC. Chứng minh rằng HaD và OaA’ cắt nhau trên (O). b) Lấy điểm X sao cho tứ giác AXDA’ là hình bình hành. Chứng minh rằng ba đường tròn ngoại tiếp các tam giác AHX, ABF và ACE có một điểm chung thứ hai khác A.

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 - 2023 sở GDĐT Khánh Hòa
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi môn Toán THPT cấp Quốc gia năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Khánh Hòa; kỳ thi được diễn ra trong 02 ngày: 21/09/2022 (vòng 1) và 22/09/2022 (vòng 2). Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Khánh Hòa : + Tìm tất cả các cặp số nguyên không âm (x; y) sao cho x2 + 3y và y2 + 3x đều là các số chính phương. + Số nguyên dương n được gọi là “hợp lý” nếu mọi số chính phương khi chia cho n đều được số dư là số chính phương. a) Chứng minh n = 16 là số “hợp lý”. b) Chứng minh rằng mọi số “hợp lý” đều không vượt quá 500. + Cho tam giác ABC nhọn, không cân, nội tiếp đường tròn (O). Hai điểm E, F lần lượt thuộc cạnh CA, AB (E và F không thuộc {A;B;C} sao cho EF song song với BC. Gọi D là điểm đối xứng với A qua EF. a) Đường thẳng đi qua A song song với BC cắt đường tròn (O) tại H (H khác A). Chứng minh ba đường thẳng DH, BE, CF đồng quy. b) Gọi I là giao điểm của BE và CF. Đường tròn đi qua E, F tiếp xúc với đường tròn (O) tại điểm L (L khác A). Chứng minh ba điểm L, D, I thẳng hàng.
Đề chọn học sinh giỏi thành phố môn Toán năm 2022 - 2023 sở GDĐT Hải Phòng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp thành phố và chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hải Phòng; kỳ thi được diễn ra vào thứ Ba ngày 20 tháng 09 năm 2022. Trích dẫn đề chọn học sinh giỏi thành phố môn Toán năm 2022 – 2023 sở GD&ĐT Hải Phòng : + Cho tam giác ABC nhọn, AB < BC < CA, trọng tâm G, các đường cao AD, BE, CF đồng quy tại H (D, E, F lần lượt nằm trên BC, CA, AB). a) Đường tròn (BHC) cắt đường tròn đường kính AH tại T khác H. Chứng minh rằng A, T, G thẳng hàng. b) Các điểm I, J, K lần lượt trên các đường thẳng BC, CA, AB sao cho HI, HJ, HK tương ứng vuông góc với AG, BG, CG. Chứng minh rằng các đường tròn (AGD), (BGE), (CGF) cùng đi qua một điểm L khác G và I, J, K, L thẳng hàng. + Chứng minh rằng phương trình (x2 + 2y2)2 – 2(z2 + 2t2)2 = 1 có vô hạn nghiệm tự nhiên. + Xâu tam phân độ dài n có dạng X = a1a2…an với ak thuộc {0;1;2} với mọi k = 1..n. Một xâu con liên tiếp bằng nhau cực đại của X có dạng Y = aiai+1…aj với 1 =< i =< j =< n mà ai = ai+1 = … = aj, ngoài ra ai-1 khác ai (nếu i >= 2) và aj khác aj+1 (nếu j =< n – 1). Ví dụ xâu 1000211 có các câu con liên tiếp bằng nhau cực đại là 1, 000, 2 và 11. a) Gọi An là tập tất cả các xâu tam phân độ dài n mà các xâu con liên tiếp bằng nhau cực đại đều có độ dài lẻ. Chứng minh rằng |A2023| = 2|A2022| + |A2021|. b) Gọi Bn là tập tất cả các câu tam phân độ dài n mà 0 và 2 không bao giờ đứng cạnh nhau. Chúng minh rằng |B2023| = |A2023| + |A2022|/3.
Đề chọn đội tuyển Toán năm 2022 - 2023 trường THPT chuyên Trần Phú - Hải Phòng
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển học sinh giỏi cấp trường môn Toán năm học 2022 – 2023 trường THPT chuyên Trần Phú, thành phố Hải Phòng. Trích dẫn đề chọn đội tuyển Toán năm 2022 – 2023 trường THPT chuyên Trần Phú – Hải Phòng : + Cho tam giác ABC nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC. Các điển K, L thay đổi lần lượt trên các cạnh AB, AC sao cho KHL = BAC. M, N theo thứ tự là điểm đối xứng của K, L qua trung điểm AB, AC. Chứng minh rằng đường thẳng MN luôn đi qua một điểm cố định. + Cho n số nguyên dương đôi một phân biệt a1; a2; …; an. Chứng minh rằng với mọi i thuộc {1; 2; …; n}, tồn tại một số nguyên dương b sao cho bai là luỹ thừa của số nguyên dương với số mũ lớn hơn 1. + 16 học sinh cùng tham gia một bài kiểm tra ngắn, gồm 3 câu hỏi dưới dạng trắc nghiệm. Mỗi câu hỏi học sinh phải chọn đúng một trong bốn phương án A, B, C hoặc D. Biết rằng hai học sinh bất kỳ có tối đa 1 câu hỏi mà họ lựa chọn cùng 1 phương án. Tìm giá trị lớn nhất của m.
Đề chọn đội tuyển Toán thi HSG thành phố năm 2023 trường chuyên Nguyễn Huệ - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi cấp thành phố môn Toán năm học 2022 – 2023 trường THPT chuyên Nguyễn Huệ, thành phố Hà Nội. Trích dẫn đề chọn đội tuyển Toán thi HSG thành phố năm 2023 trường chuyên Nguyễn Huệ – Hà Nội : + Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = mx3 – 3mx2 + (2m + 1)x + 3 – m có hai điểm cực trị A và B sao cho khoảng cách từ điểm I(1/2;15/4) đến đường thẳng AB đạt giá trị lớn nhất. + Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau lập thành từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Chọn ngẫu nhiên một số từ tập S. Tính xác suất để số được chọn có đúng 2 chữ số chẵn. + Cho hình chóp tứ giác đều S.ABCD có SA = a và ASB =1 5°. 1) Tính khoảng cách giữa hai đường thẳng AB và SC. 2) Gọi Q là trung điểm của cạnh SA. Trên các cạnh SB, SC, SD lần lượt lấy các điểm M, N, P không trùng với các đỉnh của hình chóp. Tìm giá trị nhỏ nhất của tổng AM + MN + NP + PQ theo a.