Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển chọn các bài toán về bất đẳng thức và cực trị hình học

Tài liệu gồm 102 trang, tuyển chọn các bài toán về bất đẳng thức và cực trị hình học hay và khó, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. I. MỘT SỐ KIẾN THỨC CẦN NHỚ 1. Liên hệ giữa cạnh và góc trong tam giác. Định lí 1: Cho tam giác ABC. Nếu ABC ACB thì AC AB và ngược lại. Định lí 2: Cho hai tam giác ABC và MNP có AB MN và AC MP. Khi đó ta có bất đẳng thức BAC NMP BC NP. Định lí 3: Trong tam giác ABC ta có. Định lí 4: Với mọi tam giác ABC ta luôn có. Hệ quả: Cho n điểm A A A A 123 n. Khi đó ta luôn có. Dấu bằng xẩy ra n điểm A A A A 123 n thẳng hàng và sắp xếp theo thứ tự đó. Định lí 5: Cho tam giác ABC và M là trung điểm của BC. Khi đó ta có. 2. Quan hệ giữa đường xiên, đường vuông góc và hình chiếu của đường xiên. Định lí 1: Trong các đường xiên và đường vuông góc kẻ từ một điểm ở ngoài một đường thẳng đến đường thẳng đó thì đường vuông góc là đường ngắn nhất. Định lí 2: Trong hai đường xiên kẻ từ một điểm nằm ngoài một đường thẳng đến đường thẳng đó: Đường xiên nào có hình chiếu lớn hơn thì lớn hơn. Đường xiên nào lớn hơn thì có hình chiếu lớn hơn. Nếu hai đường xiên bằng nhau thì hai hình chiếu bằng nhau, và ngược lại, nếu hai hình chiếu bằng nhau thì hai đường xiên bằng nhau. 3. Các bất đẳng thức trong đường tròn. Định lí 1: Trong một đường tròn thì đường kính là dây lớn nhất. Định lí 2: Trong một đường tròn: Hai dây bằng nhau thì cách đều tâm và ngược lại. Dây nào lớn hơn thì dây đó gần tâm hơn và ngược lại. Định lí 3: Bán kính của hai đường tròn là R r, còn khoảng cách giữa tâm của chúng là d. Điều kiện cần và đủ để hai đường tròn đó cắt nhau là R r d R r. Định lí 4: Cho đường tròn (O; R) và một điểm M bất kì nằm trong đường tròn. Khi đó ta có R d N R d. Với N là điểm bất kì trên đường tròn và d là khoảng cách từ M tới tâm đường tròn. Định lí 5: Cho đường tròn (O; R) và một điểm M bất kì ngoài đường tròn. Khi đó ta có d R MN d R. Với N là điểm bất kì trên đường tròn và d là khoảng cách từ M tới tâm đường tròn. 4. Các bất đẳng thức về diện tích. Định lí 1: Với mọi tam giác ABC ta luôn có ABC 1 S AB AC 2, dấu bằng xẩy ra khi và chỉ khi tam giác ABC vuông tại A. Định lí 2 : Với mọi tứ giác ABC ta luôn có ABCD 1 S AC BD 2, dấu bằng xẩy ra khi và chỉ khi AC vuông góc với BD. Định lí 3: Với mọi tứ giác ABCD ta luôn có ABCD 1 S AB BC AD DC 2, dấu bằng xẩy ra khi và chỉ khi 0 B D 90. 5. Một số bất đẳng thức đại số thường dùng. Với x, y là các số thực dương, ta luôn có 2 2 2 2 2 x y 2xy 2 x y x y, dấu bằng xẩy ra khi và chỉ khi x y. Với x, y, z là các số thực dương, ta luôn có. Bất đẳng thức Cauchy: Với x, y, z là các số thực dương, ta luôn có. Bất đẳng thức Bunhiacopxki. Với a, b, c và x, y, z là các số thực, ta luôn có. II. CÁC VÍ DỤ MINH HỌA III. BÀI TẬP TỰ LUYỆN IV. HƯỚNG DẪN GIẢI

Nguồn: toanmath.com

Đọc Sách

270 bài toán giải và biện luận phương trình bậc hai một ẩn - Lương Tuấn Đức
Tài liệu gồm 107 trang tuyển tập 270 bài toán giải và biện luận phương trình bậc hai một ẩn do thầy Lương Tuấn Đức biên soạn, nhằm phục vụ kỳ thi tuyển sinh lớp 10 THPT, lớp 10 hệ THPT chuyên. Nội dung chính gồm: + Giải phương trình bậc hai bằng hằng đẳng thức + Giải phương trình bậc hai bằng công thức nghiệm + Giải phương trình bậc hai bằng công thức nghiệm thu gọn + Giải và biện luận hệ phương trình bậc hai chứa tham số + Câu hỏi phụ bài toán giải và biện luận + Định lý Vi-et thuận – định lý Vi-et đảo + Bài toán nhiều cách giải
101 bài toán Parabol và các vấn đề liên quan - Lương Tuấn Đức
Trong phạm vi hàm số và đồ thị, tài liệu này tác giả tập trung trình bày một lớp các bài toán khảo sát sự biến thiên, vẽ đồ thị hàm số bậc hai đơn giản (tức là dạng parabol có đỉnh là gốc tọa độ O) hay còn gọi là đồ thị hàm số y = ax^2, vấn đề vị trí tương đối giữa parabol và đường thẳng, một số bài toán gắn kết yếu tố lượng giác, hình học giải tích. Như đã nói ở trên, mục đích khoa học chính của tài liệu nhằm phục vụ cho quá trình dạy và học, kiểm tra, kỳ thi tuyển sinh lớp 10 THPT, sau nữa làm nền tảng cho tư duy hàm số, tư duy hình học giải tích ở cấp THPT mai sau, ngoài ra còn mang tính mở rộng, đào sâu, hướng đến mong muốn bạn đọc nghiên cứu đầy đủ về đường thẳng, tăng cường sự sáng tạo, đột phá, phát huy hơn nữa trong toán học và các ứng dụng trong hàng loạt các môn khoa học tự nhiên. [ads] Nội dung tài liệu : + Sự biến thiên của hàm số bậc hai + Vẽ đồ thị hàm số bậc hai đơn giản (parabola đơn giản) + Biện luận vị trí tương đối giữa đường thẳng và parabola + Một số bài toán gắn kết yếu tố hình học + Bài toán nhiều cách giải
123 bài toán hàm số bậc nhất và đường thẳng - Lương Tuấn Đức
Trong khuôn khổ Toán học sơ cấp nói chung và Đại số phổ thông nói riêng, Hàm số và Đồ thị là dạng toán cơ bản nhưng thú vị, có phạm vi trải rộng, phong phú, liên hệ chặt chẽ với nhiều bộ phận khác của toán học sơ cấp cũng như toán học hiện đại. Tại Việt Nam, nội dung hàm số và đồ thị là một bộ phận hữu cơ, quan trọng, được phổ biến giảng dạy chính thức trong chương trình sách giáo khoa Toán bước đầu là lớp 7, tiếp sau là các lớp 9, 10, 11, 12 song song với các khối lượng kiến thức liên quan. Các kỹ năng đối với hàm số, đồ thị được luyện tập một cách đều đặn, bài bản và hệ thống sẽ rất hữu ích, không chỉ trong bộ môn Toán mà còn phục vụ đắc lực cho các môn khoa học tự nhiên khác như Hóa học, Vật lý, Địa lý, Sinh học …. Đối với chương trình Đại số lớp 9 THCS hiện hành, hàm số và đồ thị giữ vai trò chính yếu trong Đề thi kiểm tra chất lượng học kỳ, Đề thi tuyển sinh lớp 10 THPT hệ đại trà và hệ THPT Chuyên. Đối với các lớp cao hơn, nội dung này sẽ được mở rộng trở thành kiến thức chính yếu trong chương trình Đại số – Giải tích xuyên suốt các lớp 10, 12, bao gồm hàm số bậc cao và bài toán hình học giải tích, một bài toán mang tính phân loại cao trong kỳ thi tuyển sinh đại học – cao đẳng, kỳ thi THPT Quốc gia hàng năm, một kỳ thi đầy cam go, kịch tính và bất ngờ, nó lại là một câu rất được quan tâm của các bạn học sinh, phụ huynh, các thầy cô, giới chuyên môn và đông đảo bạn đọc yêu Toán. Trong phạm vi hàm số và đồ thị, tài liệu này tác giả tập trung trình bày một lớp các bài toán khảo sát sự biến thiên, vẽ đồ thị hàm số bậc nhất (tức là dạng đường thẳng), vấn đề vị trí tương đối giữa hai đường thẳng, hoặc vị trí tương đối giữa đường thẳng và đường cong, một số bài toán gắn kết yếu tố lượng giác, hình học giải tích. Như đã nói ở trên, mục đích khoa học chính của tài liệu nhằm phục vụ cho quá trình dạy và học, kiểm tra, kỳ thi tuyển sinh lớp 9 THPT, ngoài ra tác giả đã cố gắng nâng cao, mở rộng và phát triển từng bài toán theo đúng nội dung chủ đạo hàm số bậc THPT, chủ quan cho rằng điều này sẽ góp phần giới thiệu, định hướng, phá bỏ bỡ ngỡ, tạo ra cái nhìn đa chiều đối với bài toán đồ thị và hàm số, với những nội dung như cực trị, tương giao, tiếp tuyến, giá trị lớn nhất nhỏ nhất hàm số mai sau, thiết nghĩ yếu tố này góp phần làm tiền đề tư duy hàm số, tư duy hình học giải tích ở cấp THPT trong tương lai các em học sinh THCS, ngoài ra còn mang tính mở rộng, đào sâu, hướng đến mong muốn bạn đọc nghiên cứu đầy đủ về đường thẳng, tăng cường sự sáng tạo, đột phá, phát huy hơn nữa trong toán học và các ứng dụng trong hàng loạt các môn khoa học tự nhiên. [ads] I. KIẾN THỨC CHUẨN BỊ 1. Kỹ thuật nhân, chia đơn thức, đa thức, hằng đẳng thức. 2. Nắm vững các phương pháp phân tích đa thức thành nhân tử. 3. Nắm vững các phương pháp giải, biện luận phương trình bậc nhất, bậc hai, bậc cao, phương trình chứa ẩn ở mẫu. 4. Sử dụng thành thạo các ký hiệu toán học, logic (ký hiệu hội, tuyển, kéo theo, tương đương). 5. Kiến thức nền tảng về mặt phẳng tọa độ, hàm số bậc nhất, đường thẳng. 6. Kỹ năng vẽ đồ thị hàm số. 7. Kiến thức nền tảng về hệ số góc của đường thẳng, công thức độ dài, hệ thức lượng trong tam giác vuông, công thức lượng giác, đường tròn, hàm số bậc hai parabol, phương trình nghiệm nguyên. 8. Kiến thức nền tảng về giá trị tuyệt đối, căn thức, ước lượng – đánh giá, hàm số – đồ thị, bất đẳng thức – cực trị, giá trị lớn nhất, giá trị nhỏ nhất.
Chuyên đề bất đẳng thức
Tài liệu gồm 28 trang trình bày các phương pháp chứng minh bất đẳng thức và ứng dụng của bất đẳng thức