Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 9 môn Toán năm 2018 2019 trường THCS Nguyễn Du Hà Nội

Nội dung Đề KSCL lớp 9 môn Toán năm 2018 2019 trường THCS Nguyễn Du Hà Nội Bản PDF - Nội dung bài viết Đề KSCL Toán lớp 9 năm 2018 - 2019 trường THCS Nguyễn Du Hà Nội Đề KSCL Toán lớp 9 năm 2018 - 2019 trường THCS Nguyễn Du Hà Nội Ngày 22 tháng 05 năm 2019, trường THCS Nguyễn Du – Hoàn Kiếm – Hà Nội đã tổ chức kỳ thi khảo sát chất lượng môn Toán năm học 2018 – 2019 cho học sinh lớp 9. Kỳ thi này nhằm mục đích tổng ôn kiến thức Toán trước khi các em thi vào lớp 10 THPT trong năm học tiếp theo. Đề KSCL Toán lớp 9 năm 2018 - 2019 trường THCS Nguyễn Du Hà Nội được biên soạn dưới dạng đề tự luận, bao gồm 1 trang với 5 bài toán, thời gian làm bài 120 phút. Trích dẫn một số câu hỏi từ đề KSCL Toán lớp 9 năm 2018 - 2019 trường THCS Nguyễn Du – Hà Nội: 1. Câu hỏi về hai ôtô khởi hành từ điểm A để đi đến điểm B trên quãng đường dài 120 km. Biết vận tốc trung bình của ô tô thứ nhất lớn hơn vận tốc trung bình của ô tô thứ hai là 12 km/h. Sau cùng, ô tô thứ nhất đã đến B trước ô tô thứ hai 30 phút. Yêu cầu tính vận tốc trung bình của mỗi ô tô. 2. Câu hỏi về parabol và đường thẳng trong mặt phẳng tọa độ Oxy. Yêu cầu chứng minh với mọi giá trị m khác 0, đường thẳng luôn cắt parabol tại hai điểm phân biệt có hoành độ khác nhau. Tiếp theo, tìm tất cả các giá trị m để một đẳng thức được thỏa mãn. 3. Câu hỏi về nửa đường tròn, đường thẳng, và các điểm trên đường tròn. Yêu cầu chứng minh một số tính chất của các điểm và đường thẳng trong bài toán. Đề KSCL Toán lớp 9 năm 2018 - 2019 trường THCS Nguyễn Du Hà Nội không chỉ giúp học sinh ôn tập kiến thức mà còn rèn luyện kỹ năng giải quyết vấn đề và tư duy logic. Qua đó, học sinh sẽ tự tin hơn khi đối diện với kỳ thi tuyển sinh vào lớp 10 THPT.

Nguồn: sytu.vn

Đọc Sách

Đề KSCL vòng 5 Toán 9 năm 2021 - 2022 trường THCS Cát Linh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng vòng 5 môn Toán 9 năm học 2021 – 2022 trường THCS Cát Linh, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 21 tháng 05 năm 2022. Trích dẫn đề KSCL vòng 5 Toán 9 năm 2021 – 2022 trường THCS Cát Linh – Hà Nội : + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = (m + 1)x + 2 với x là biến số và m là tham số. a/ Chứng minh với mọi giá trị của m đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. b/ Gọi hoành độ giao điểm của đường thẳng (d) và parabol (P) là x1 và x2. Tìm m để x12 + x1 + (m + 2)x2 = 14. + Cho đường tròn (O;R) đường kính AB và CD vuông góc với nhau, điểm E di động trên cung nhỏ BC. Đoạn thẳng AE cắt đoạn thẳng CD và CB lần lượt tại M và N. Đoạn thẳng ED cắt AB tại H. 1/ Chứng minh tứ giác EBHN nội tiếp. 2/ Chứng minh BN.BC = BH.BA. 3/ Chứng minh diện tích tứ giác AMHD không đổi, từ đó suy ra vị trí của điểm E để diện tích tam giác EMH lớn nhất. + Cho ba số x, y, z là các số thực dương thỏa mãn điều kiện x + y + z = 3. Chứng minh rằng?
Đề KSCL Toán 9 năm 2021 - 2022 trường THCS Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2021 – 2022 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 13 tháng 05 năm 2022.
Đề KSCL Toán 9 cuối năm 2021 - 2022 phòng GDĐT thành phố Vinh - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 cuối năm học 2021 – 2022 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An. Trích dẫn đề KSCL Toán 9 cuối năm 2021 – 2022 phòng GD&ĐT thành phố Vinh – Nghệ An : + Cho phương trình: x2 – 4x + m + 5 = 0 (1) a) Tìm giá trị tham số m để phương trình (1) có nghiệm b) Tìm giá trị tham số m để phương trình (1) có hai nghiệm dương x2 và x2 thỏa mãn. + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Để chuẩn bị cho SEA Games 31 diễn ra từ ngày 12/5/2022 đến 23/5/2022 tại Việt Nam, Ban tổ chức tuyển chọn được 3000 tình nguyện viên (TNV) cả nam và nữ đáp ứng trình độ tiếng Anh B1. Nếu tăng yêu cầu tiếng Anh lên trình độ B2 thì số TNV nam giảm 20%, nữ giảm 10% và do đó tổng số TNV chỉ còn 2580 người. Hỏi Ban tổ chức đã tuyển chọn được bao nhiêu tình nguyện viên nam, bao nhiêu TNV nữ theo tiêu chuẩn ban đầu? + Từ điểm A bên ngoài đường tròn (O) vẽ hai tiếp tuyến AB, AC và cát tuyết AEF (B và C là tiếp điểm, tia AF nằm giữa hai tia AB và AO, E nằm giữa A và F). Gọi I là giao điểm của AO và BC, K là trung điểm của EF a) Chứng minh tứ giác ABOC nội tiếp b) Biết OB = 3cm, BOC = 120. Tính độ dài cung tròn BEC c) Đường thẳng đi qua K song song với BF cắt BC ở M. Chứng minh rằng KMC = KEC d) Tia FM cắt AB tại N. Chứng minh N là trung điểm của AB.
Đề KSCL Toán 9 lần 1 năm 2021 - 2022 phòng GDĐT Mê Linh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh lớp 9 môn Toán lần 1 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Mê Linh, thành phố Hà Nội. Trích dẫn đề KSCL Toán 9 lần 1 năm 2021 – 2022 phòng GD&ĐT Mê Linh – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai vòi nước cùng chảy vào một bể không có nước thì sau 12 giờ sẽ đầy bể. Nếu mở vòi I chảy trong 4 giờ rồi khóa lại và mở tiếp vòi II chảy trong 3 giờ thì được 3/10 bể. Hỏi nếu mỗi vòi chảy một mình thì sau bao lâu sẽ đầy bể? + Tính diện tích tường nhà cần phải quét vôi của một căn phòng hình hộp chữ nhật có chiều dài 5 m, chiều rộng 4 m, chiều cao 4 m; biết diện tích để làm cửa đi và cửa sổ chiếm 20% diện tích tường. + Cho phương trình m2x – 2(m + 1)x + 1 = 0 (*) với m là tham số. a) Tìm giá trị của m để phương trình (*) có nghiệm bằng 2 b) Tìm giá trị nguyên nhỏ nhất của m để phương trình (*) có hai nghiệm phân biệt.