Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào năm 2019 2020 môn Toán sở GD ĐT Nghệ An

Nội dung Đề tuyển sinh vào năm 2019 2020 môn Toán sở GD ĐT Nghệ An Bản PDF - Nội dung bài viết Đề tuyển sinh vào năm 2019 2020 môn Toán sở GD ĐT Nghệ An Đề tuyển sinh vào năm 2019 2020 môn Toán sở GD ĐT Nghệ An Sytu xin gửi đến quý thầy cô và các em học sinh đề tuyển sinh vào lớp 10 năm học 2019 – 2020 môn Toán sở GD&ĐT Nghệ An. Đề thi được biên soạn theo dạng tự luận, với cấu trúc tương tự các năm học trước. Đề thi bao gồm 5 bài toán, thời gian làm bài là 120 phút. Trích đề thi chính thức tuyển sinh vào lớp 10 năm 2019 – 2020 môn Toán sở GD&ĐT Nghệ An: 1. Cho đường tròn (O) có hai đường kính AB và MN vuông góc với nhau. Trên tia đối của tia MA lấy điểm C khác điểm M. Kẻ MH vuông góc với BC (H thuộc BC). a) Chứng minh BOMH là tứ giác nội tiếp. b) MB cắt OH tại E. Chứng minh ME.HM = BE.HC. c) Gọi giao điểm của đường tròn (O) và đường tròn ngoại tiếp tam giác MHC là K. Chứng minh ba điểm C, K, E thẳng hàng. 2. Tình cảm gia đình có sức mạnh thật phi thường. Bạn Vi Quyết Chiến – Cậu bé 13 tuổi quá thương nhớ em trai của mình đã vượt qua một quãng đường dài 180 km từ Sơn La đến bệnh viện nhi Trung ương Hà Nội để thăm em. Sau khi đi bằng xe đạp 7 giờ, bạn ấy được lên xe khách và đi tiếp 1 giờ 30 phút nữa thì đến nơi. Biết vận tốc của xe khách lớn hơn vận tốc của xe đạp là 35 km/giờ. Tính vận tốc xe đạp của bạn Chiến. 3. Xác định hàm số bậc nhất y = ax + b biết rằng đồ thị của hàm số đi qua hai điểm M(1;-1) và N(2;1).

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2021 - 2022 sở GDĐT An Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 THPT môn Toán năm học 2021 – 2022 sở GD&ĐT An Giang. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2021 – 2022 sở GD&ĐT An Giang : + Cho hai hàm số y = x^2 có đồ thị là parabol (P) và y = x + 2 có đồ thị là đường thẳng (d). a. Vẽ đồ thị (P) và (d) trên cùng một hệ trục tọa độ. b. Bằng phép tính, tìm tọa độ giao điểm của (P) và (d). + Cho bốn điểm A, B, C, D theo thứ tự lần lượt nằm trên nửa đường tròn đường kính AD. Gọi E là giao điểm của AC và BD. Kẻ EF vuông góc với AD (F thuộc AD). a. Chứng minh tứ giác ABEF nội tiếp. b. Chứng minh BD là tia phân giác của góc CBF. + Một bức tường được xây bằng các viên gạch hình chữ nhật bằng nhau và được bố trí như hình vẽ bên. Phần sơn màu (tô đậm) là phần ngoài của một hình tam giác có cạnh đáy 10 dm và chiều cao 6 dm. Tính diện tích phần tô đậm.
Đề tham khảo tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT TP Hồ Chí Minh
Tài liệu gồm 77 trang, được biên soạn bởi quý thầy, cô giáo nhóm Toán Tiểu Học – THCS – THPT Việt Nam, tuyển tập 36 đề tham khảo tuyển sinh lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT thành phố Hồ Chí Minh. Đề 1. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 1–1. Đề 2. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 1–2. Đề 3. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 1–3. Đề 4. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 2–1. Đề 5. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 2–2. Đề 6. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 2–3. Đề 7. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 3–1. Đề 8. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 3–2. Đề 9. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 3–3. Đề 10. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 4–1. Đề 11. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 4–2. Đề 12. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 4–3. Đề 13. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 5–1. Đề 14. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 5–2. Đề 15. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 5–3. Đề 16. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 6–1. Đề 17. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 6–2. Đề 18. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 6–3. Đề 19. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 7–1. Đề 20. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 7–2. Đề 21. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 7–3. Đề 22. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 8–1. Đề 23. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 8–2. Đề 24. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 8–3. Đề 25. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 9–1. Đề 26. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 9–2. Đề 27. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 9–3. Đề 28. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 10–1. Đề 29. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 10–2. Đề 30. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 10–3. Đề 31. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 11–1. Đề 32. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 11–2. Đề 33. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 11–3. Đề 34. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 12–1. Đề 35. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 12–2. Đề 36. ĐỀ THI THỬ TUYỂN SINH 10 – Quận 12–3.
Đề đánh giá năng lực Toán thi vào 10 năm 2021 - 2022 trường Tạ Quang Bửu - Hà Nội
Ngày 25 tháng 04 năm 2021, trường THCS & THPT Tạ Quang Bửu, thành phố Hà Nội tổ chức kỳ thi giành học bổng “Ươm Mầm Tài Năng Bách Khoa” và đánh giá năng lực học sinh vào lớp 10 môn Toán năm học 2021 – 2022. Đề đánh giá năng lực Toán thi vào 10 năm 2021 – 2022 trường Tạ Quang Bửu – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề đánh giá năng lực Toán thi vào 10 năm 2021 – 2022 trường Tạ Quang Bửu – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một khu vườn có chiều dài hơn chiều rộng 6 m. Nếu tăng chiều dài thêm 2 m và tăng chiều rộng thêm 4 m thì diện tích khu vườn tăng thêm 80 m2. Tính chiều dài và chiều rộng của khu vườn. + Một chiếc mũ giấy có dạng hình nón, với độ dài đường sinh bằng 30 cm và đường kính đáy bằng 15 cm. Tính diện tích giấy để làm mũ (không kể riềm, mép, phần thừa). + Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn. Qua A kẻ các tiếp tuyến AM, AN với đường tròn (M, N là tiếp điểm) và cát tuyến ABC không qua O (tia AC nằm giữa AN và AO; B nằm giữa A và C). 1) Chứng minh bốn điểm A, M, O, N thuộc cùng một đường tròn. 2) Qua M kẻ đường thẳng song song với AC, cắt đường tròn tại điểm thứ hai E. NE cắt BC tại I. Chứng minh MON NIB 2 và I là trung điểm của BC. 3) MN cắt BC tại K. Chứng minh 2 1 1 AK AB AC.
Đề tham khảo Toán tuyển sinh lớp 10 năm 2021 - 2022 sở GDĐT Thái Nguyên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề tham khảo Toán tuyển sinh lớp 10 năm 2021 – 2022 sở GD&ĐT Thái Nguyên. Trích dẫn đề tham khảo Toán tuyển sinh lớp 10 năm 2021 – 2022 sở GD&ĐT Thái Nguyên : + Cho chất lỏng thứ nhất và thứ hai có khối lượng lần lượt là 10g và 7g. Khối lượng riêng của chất lỏng thứ nhất lớn hơn khối lượng riêng của chất lỏng thứ hai là 300 kg/m3. Đem hai chất lỏng trên trộn vào nhau thì được hỗn hợp chất lỏng có khối lượng riêng là 850 kg/m3. Tính khối lượng riêng của mỗi chất lỏng (biết rằng thể tích của hỗn hợp chất lỏng bằng tổng thể tích của hai chất lỏng và khi hai chất lỏng trộn vào nhau thì không có phản ứng hóa học xảy ra). + Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 3cm, BH = 1cm. Tính độ dài các đoạn thẳng AB, AC. + Cho hai đường tròn (O; 5cm) và (O’; 9cm). Đặt OO’ = a (cm) với a > 0. Tìm tất cả các giá trị nguyên dương của a để hai đường tròn (O) và (O’) cắt nhau.