Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Vĩnh Phúc

Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Vĩnh Phúc Bản PDF - Nội dung bài viết Thông báo về Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Vĩnh Phúc Thông báo về Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Vĩnh Phúc Sytu xin gửi đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 THPT môn Toán năm học 2022-2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc. Đề thi bao gồm 04 câu trắc nghiệm (02 điểm) và 06 câu tự luận (08 điểm), thời gian làm bài 120 phút (không tính thời gian giao đề). Kỳ thi được tổ chức vào Chủ Nhật ngày 05 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022-2023 sở GD&ĐT Vĩnh Phúc: + Cho Parabol (P): y = x^2 và đường thẳng d: y = -2x + m – 1 (với m là tham số). Tìm tất cả các giá trị của tham số m để đường thẳng d cắt Parabol (P) tại hai điểm phân biệt A(x1;y1) và B(x2;y2) sao cho. + Một phân xưởng cần may 900 bộ quần áo trong thời gian đã định, mỗi ngày may số bộ quần áo như nhau. Khi cải tiến kỹ thuật, mỗi ngày phân xưởng may thêm được 10 bộ quần áo và hoàn thành kế hoạch trước 3 ngày. Hỏi theo kế hoạch, mỗi ngày phân xưởng cần may bao nhiêu bộ quần áo? + Cho tam giác ABC nhọn, nội tiếp đường tròn (O;R) và AB < AC. Ba đường cao AD, BE, CF của tam giác ABC đồng quy tại điểm H. Kẻ đường kính AK của đường tròn (O; R). Gọi M là hình chiếu vuông góc của C trên đường thẳng AK. a) Chứng minh rằng tứ giác BCEF nội tiếp đường tròn. b) Chứng minh rằng tam giác ABD đồng dạng với tam giác AKC và MD song song với BK. c) Giả sử hai đỉnh B, C cố định trên đường tròn (O; R) và đỉnh A di động trên cung lớn BC của đường tròn (O; R). Chứng minh rằng đường thẳng MF luôn đi qua một điểm cố định và tìm vị trí của đỉnh A sao cho diện tích tam giác AEH lớn nhất.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử tuyển sinh THPT năm học 2017 2018 môn Toán trường THCS Võ Thị Sáu Hải Phòng lần 1
Nội dung Đề thi thử tuyển sinh THPT năm học 2017 2018 môn Toán trường THCS Võ Thị Sáu Hải Phòng lần 1 Bản PDF - Nội dung bài viết Đề thi thử tuyển sinh THPT năm học 2017 - 2018 môn Toán trường THCS Võ Thị Sáu Hải Phòng lần 1 Đề thi thử tuyển sinh THPT năm học 2017 - 2018 môn Toán trường THCS Võ Thị Sáu Hải Phòng lần 1 Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán trường THCS Võ Thị Sáu - Hải Phòng lần 1 bao gồm 5 bài toán tự luận, mỗi bài toán đều có lời giải chi tiết để giúp học sinh ôn tập và chuẩn bị tốt nhất cho kỳ thi sắp tới. Trong đó, một số bài toán được trích dẫn như sau: + Một hãng taxi giá rẻ định giá tiền theo hai gói cước khác nhau. Hãy tính toán và so sánh để biết gói cước nào sẽ tiết kiệm hơn cho một quãng đường cụ thể. + Với đường tròn và các phương pháp tính toán hình học, hãy chứng minh các mệnh đề và tính chất liên quan đến các đường tròn, tam giác và các khái niệm hình học khác. + Tính toán và so sánh thể tích của một hình trụ và một hình cầu được cung cấp thông tin về thể tích cụ thể. Đề thi này không chỉ giúp học sinh rèn luyện kỹ năng giải toán mà còn giúp họ hiểu rõ hơn về các khái niệm toán học cơ bản và nâng cao.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Bắc Ninh
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Bắc Ninh Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Bắc Ninh Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Bắc Ninh Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Bắc Ninh bao gồm 5 bài toán tự luận, được đi kèm với lời giải chi tiết để học sinh tham khảo. Một trong những bài toán có trong đề thi như sau: - Một nhóm 15 học sinh (bao gồm cả nam và nữ) tham gia buổi lao động trồng cây. Các bạn nam trồng được 30 cây, các bạn nữ trồng được 36 cây. Mỗi bạn nam trồng được số cây như nhau và mỗi bạn nữ trồng được số cây như nhau. Biết rằng mỗi bạn nam trồng được nhiều hơn mỗi bạn nữ 1 cây. Tính số học sinh nam và số học sinh nữ của nhóm. Bên cạnh đó, đề thi cũng đưa ra bài toán phức tạp về hình học, đòi hỏi học sinh phải áp dụng các kiến thức lý thuyết để giải quyết vấn đề. Ví dụ: - Xác định tính chất của tứ giác ADCE nội tiếp một đường tròn trong một hệ tọa độ với điểm M nằm ngoài đường tròn (O). Qua đó, các em học sinh sẽ được thử thách về kiến thức và kỹ năng giải quyết vấn đề, từ đó cải thiện khả năng tư duy logic và sáng tạo trong quá trình học tập và rèn luyện trí tuệ.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Bình Phước
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Bình Phước Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Bình Phước Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Bình Phước Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán của sở GD và ĐT Bình Phước là bài kiểm tra đánh giá năng lực và kiến thức của học sinh. Đề thi gồm 5 bài toán tự luận, đi kèm lời giải chi tiết cho các câu khó giúp học sinh hiểu rõ từng bước giải. Trong đề thi này, có một số bài toán thú vị như sau: Bài toán 1: Cho vườn hoa hình chữ nhật có diện tích bằng 91m2 và chiều dài lớn hơn chiều rộng là 6m. Hỏi chu vi của vườn hoa là bao nhiêu? Bài toán 2: Đường tròn (O) có đường kính AB. Vẽ tiếp tuyến Ax với đường tròn (O) tại điểm A. Chứng minh rằng tứ giác AOHC là tứ giác nội tiếp, và thực hiện các bước chứng minh khác của bài toán. Các bài toán trong đề thi giúp học sinh thử thách khả năng tư duy logic và khả năng suy luận. Đồng thời, qua việc giải các bài toán này, học sinh cũng có cơ hội rèn luyện kỹ năng làm việc độc lập và giải quyết vấn đề.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bắc Ninh
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bắc Ninh Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên môn Toán năm học 2017 - 2018 Đề thi tuyển sinh THPT chuyên môn Toán năm học 2017 - 2018 Đề thi tuyển sinh lớp 10 THPT chuyên môn Toán năm học 2017 - 2018 của sở GD và ĐT Bắc Ninh bao gồm 5 bài toán tự luận, kèm theo lời giải chi tiết. Dưới đây là một số bài toán trong đề: + Cho tam giác vuông có độ dài các cạnh là các số tự nhiên có hai chữ số. Sau khi hoán đổi hai chữ số của cạnh huyền, ta được số đo của một góc vuông. Hãy tính bán kính của đường tròn ngoại tiếp tam giác đó. + Đưa ra 2n+1 số nguyên, trong đó có một số 0 và các số 1, 2, 3, ..., n mỗi số xuất hiện hai lần. Chứng minh rằng với mọi số tự nhiên n, chúng ta luôn có thể sắp xếp 2n+1 số nguyên trên một dãy sao cho với mọi m = 1, 2, ..., n, có đúng m số nằm giữa hai số m. Đề thi này không chỉ đánh giá kiến thức mà còn đòi hỏi sự tổng hợp, logic và khả năng suy luận của thí sinh. Chắc chắn rằng đề thi sẽ đem lại cho các bạn thử thách đầy hào hứng và đồng thời giúp họ phát huy tối đa khả năng của mình trong môn Toán.