Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh chuyên năm 2018 2019 môn Toán sở GD và ĐT Thái Bình (đề chuyên)

Nội dung Đề tuyển sinh chuyên năm 2018 2019 môn Toán sở GD và ĐT Thái Bình (đề chuyên) Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên năm 2018-2019 môn Toán sở GD và ĐT Thái Bình (đề chuyên) Đề tuyển sinh chuyên năm 2018-2019 môn Toán sở GD và ĐT Thái Bình (đề chuyên) Đề tuyển sinh lớp 10 chuyên năm 2018-2019 môn Toán của sở GD và ĐT Thái Bình được biên soạn dành riêng cho các thí sinh chuyên Toán, Tin. Đề bao gồm 6 bài toán được tổ chức theo hình thức tự luận, thời gian làm bài 150 phút. Kết quả của bài thi này sẽ là cơ sở quan trọng để tuyển chọn những em học sinh có năng khiếu vượt trội trong môn Toán và Tin học để bồi dưỡng tại các lớp chuyên. Trích dẫn một số câu hỏi từ đề tuyển sinh lớp 10 chuyên năm 2018-2019 môn Toán sở GD và ĐT Thái Bình: 1. Cho nửa đường tròn có đường kính AB = 2R. Tìm kích thước hình chữ nhật MNPQ có diện tích lớn nhất, trong đó hai đỉnh M, N thuộc nửa đường tròn và hai đỉnh P, Q thuộc đường kính AB. 2. Hai cây nến cùng chiều dài cháy hết trong 3 giờ và 4 giờ. Tính thời gian cần để đốt chúng sao cho phần còn lại của cây nến thứ hai gấp đôi phần còn lại của cây nến thứ nhất, bắt đầu từ lúc nào trong chiều. 3. Cho tam giác ABC có các cạnh AB = 4, AC = 3, BC = 5 và đường cao AH. Vẽ hai nửa đường tròn BH và HC trên nửa mặt phẳng bờ BC chứa điểm A. Chứng minh rằng tứ giác BEFC nội tiếp và đường thẳng EF là tiếp tuyến của hai đường tròn BH và HC.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Quãng Ngãi
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Quãng Ngãi gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hai điểm A, B phân biệt nằm trong góc nhọn xOy sao cho góc xOA = góc yOB. Gọi M, N lần lượt là hình chiếu vuông góc của A lên các tia Ox, Oy và P, Q lần lượt là hình chiếu vuông góc của B lên các tia Ox, Oy .Gỉa sử M, N, P, Q đôi một phân biệt. Chứng minh rằng bốn điểm M,N,P,Q cùng thuộc một đường tròn. [ads] + Cho tam giác AB không cân, có ba góc nhọn. Một đường tròn đi qua B, C cắt các cạnh AC, AB lần lượt tại D, E. Gọi M, N lần lượt là trung điểm của BD, CE a. Chứng minh rằng các tam giác ABD, ACE đồng dạng với nhau và MAB = NAC. b. Gọi H là hình chiếu vuông góc của M lên AB, K là hình chiếu vuông góc của N lên AC và I là trung điểm của MN. Chứng minh rằng tam giác IHK cân. + Cho 9 số nguyên dương đôi một phân biệt ,các số đó đều chỉ chứa các ước số nguyên tố gồm 2, 3, 5. Chứng minh rằng trong 9 số đã cho tồn tại 2 số mà tích của chúng là một số chính phương.
Đề thi thử tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THCS Nga Thiện - Thanh Hóa
Đề thi thử tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THCS Nga Thiện – Thanh Hóa gồm 5 bài toán tự luận, có lời giải chi tiết.
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nam
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hà Nam gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (O). Từ một điểm M nằm ngoài đường tròn (O), kẻ hai tiếp tuyến MA và MB của đường tròn (A, B là các tiếp điểm). Kẻ đường kính BE của đường tròn (O). Gọi F là giao điểm thứ hai của đường thẳng ME và đường tròn (O). Đường thẳng AF cắt MO tại điểm N. Gọi H là giao điểm của MO và AB [ads] 1) Chứng minh tứ giác MAOB nội tiếp đường tròn 2) Chứng minh đường thẳng AE song song với đường thẳng MO 3) Chứng minh: MN2 = NF.NA 4) Chứng minh: MN = NH
Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán trường THCS Thiệu Vận - Thanh Hóa lần 1
Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THCS Thiệu Vận – Thanh Hóa lần 1 gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2(m – 2)x + m – 3 và parabol (P): y = mx^2 (m khác 0) a. Tìm m để đường thẳng d đi qua điểm A (-1;3) b. Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 trái dấu (với (d) là ở đề bài cho) [ads] + Cho đường tròn tâm (0), đường kính AB = 2R. Trên đường thẳng AB lấy điểm H sao cho B nằm giữa A và H (H không trùng với B), qua H dựng đường thẳng d vuông góc với AB. Lấy C cố định thuộc đoạn thẳng OB (C không trùng với O và B). Qua điểm C kẻ đường thẳng a bất kì cắt đường tròn (0) tại hai điểm E và F (a không trùng với AB). Các tia AE và AF cắt đường thẳng d lần lượt tại M, N a) Chứng minh tứ giác BEMH nội tiếp đường tròn b) Chứng minh 2 tam giác AFB và AHN đồng dạng, và đường tròn ngoại tiếp tam giác AMN luôn đi qua một điểm cố định khác A khi đường thẳng a thay đổi c) Cho AB = 4cm; BC = 1cm; HB = 1 cm. Tìm giá trị nhỏ nhất của diện tích tam giác AMN