Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 11 môn Toán năm 2021 2022 trường THPT chuyên Bắc Ninh

Nội dung Đề học sinh giỏi lớp 11 môn Toán năm 2021 2022 trường THPT chuyên Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi (HSG) môn Toán lớp 11 năm học 2021 – 2022 trường THPT chuyên Bắc Ninh, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 13 tháng 04 năm 2022. Trích dẫn đề học sinh giỏi Toán lớp 11 năm 2021 – 2022 trường THPT chuyên Bắc Ninh : + Cho m > 1 là một số nguyên. Chứng minh rằng với mọi số nguyên n có thể biểu diễn dưới dạng n = a + b, trong đó a là một số nguyên nguyên tố cùng nhau với m và b là một số nguyên sao cho b2 ≡ b( mod m). + Đề thi THPT môn Toán gồm 50 câu trắc nghiệm khách quan, mỗi câu có 4 phương án trả lời và chỉ có 1 phương án đúng, mỗi câu trả lời đúng được cộng 0, 2 điểm, điểm tối đa là 10 điểm. Một học sinh có năng lực trung bình đã làm đúng được 25 câu( từ câu 1 đến câu 25), các câu còn lại học sinh đó không biết cách giải nên chọn phương án ngẫu nhiên cả 25 câu còn lại. Tính xác suất để điểm thi môn Toán của học sinh đó lớn hơn 6 điểm nhưng không vượt quá 8 điểm (làm tròn đến hàng phần nghìn). + Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của BC, G là trọng tâm ∆ABM; điểm D(7; −2) nằm trên đoạn MC sao cho GA = GD. Viết phương trình đường thẳng AB, biết hoành độ của A nhỏ hơn 4 và AG có phương trình 3x − y − 13 = 0.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi lớp 11 môn Toán năm học 2016 2017 sở GD và ĐT Vĩnh Phúc
Nội dung Đề thi chọn học sinh giỏi lớp 11 môn Toán năm học 2016 2017 sở GD và ĐT Vĩnh Phúc Bản PDF Đề thi chọn học sinh giỏi Toán lớp 11 năm học 2016 – 2017 sở GD và ĐT Vĩnh Phúc gồm 5 bài toán tự luận. Đề thi có lời giải chi tiết và thang điểm. Trích một số bài toán trong đề: + Cho tam giác ABC cân tại A. Gọi D là trung điểm cạnh AC và M là trung điểm cạnh BC. Đoạn thẳng AM cắt đường tròn ngoại tiếp tam giác BCD tại điểm E. Đường thẳng BD cắt đường tròn ngoại tiếp tam giác ABE tại điểm F khác B. Đường thẳng AF cắt đường thẳng BE tại I, đường thẳng CI cắt đường thẳng BD tại K. a. Chứng minh rằng DA = DF b. Chứng minh rằng I là tâm đường tròn nội tiếp tam giác ABK + Cho S là một số nguyên dương sao cho S chia hết cho tất cả các số nguyên dương từ 1 đến 2017. Xét k số nguyên dương a1, a2, … ak (không nhất thiết phân biệt) thuộc tập hợp {1, 2, … 2017} thỏa mãn a1 + a2 + … + ak >= 2S. Chứng minh rằng ta có thể chọn ra từ các số a1, a2, … ak một vài số sao cho tổng của chúng bằng S.
Đề thi KSCL học sinh giỏi lớp 11 môn Toán năm học 2016 2017 cụm thi THPT Yên Thành Nghệ An
Nội dung Đề thi KSCL học sinh giỏi lớp 11 môn Toán năm học 2016 2017 cụm thi THPT Yên Thành Nghệ An Bản PDF Đề thi KSCL học sinh giỏi Toán lớp 11 năm học 2016 – 2017 cụm thi THPT Yên Thành – Nghệ An gồm 6 câu hỏi tự luận, có lời giải chi tiết.
Đề thi học sinh giỏi lớp 11 môn Toán cấp tỉnh năm 2016 2017 sở GD ĐT Lai Châu
Nội dung Đề thi học sinh giỏi lớp 11 môn Toán cấp tỉnh năm 2016 2017 sở GD ĐT Lai Châu Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán lớp 11 cấp tỉnh năm học 2016 – 2017 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán lớp 11 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAD là một tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm của các cạnh SB, BC và CD. Biết góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 0 30. a) Chứng minh rằng BP AMN. b) Tính khoảng cách giữa hai đường thẳng AB và SC. + Giải phương trình sau: sin 2 2cos2 1 sin 4cos x x xx. + Cho số nguyên dương n thỏa mãn điều kiện: 32 1 2 n n C C CC n n nn. Tìm hệ số của số hạng chứa 11 x trong khai triển 3 8 3 n n n x x với x ≠ 0.
Đề thi học sinh giỏi cấp tỉnh lớp 11 môn Toán năm 2014 2015 sở GD ĐT Hà Tĩnh
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 11 môn Toán năm 2014 2015 sở GD ĐT Hà Tĩnh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi cấp tỉnh Toán lớp 11 năm học 2014 – 2015 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán lớp 11 năm 2014 – 2015 sở GD&ĐT Hà Tĩnh : + Trong mặt phẳng (P) cho nửa đường tròn (O) đường kính AC, điểm B di động trên nửa đường tròn (O) với B khác A và C. Trên nửa đường thẳng Ax vuông góc với (P) lấy điểm S sao cho SA AC a. Gọi H, K lần lượt là chân đường cao hạ từ A xuống SB, SC. a) Chứng minh rằng tam giác AHK vuông. Tính diện tích tam giác SBC theo a biết 34 34 a HK. b) Xác định vị trí của B trên nửa đường tròn (O) sao cho tổng diện tích các tam giác SAB và CAB lớn nhất. + Cho dãy số (xn) xác định như sau: 1 x 3 và 3 1 2 2 4 6 n n n n n x x x x x với n 1 2 Với mỗi số nguyên dương n đặt 2 1 1 4 n n i i y x. Tìm lim n y. + Cho x, y, z dương thỏa mãn 3 26 xy yz zx. Tìm giá trị lớn nhất của biểu thức.