Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 1 Toán 11 năm học 2018 - 2019 sở GD và ĐT Bà Rịa - Vũng Tàu

Đề thi học kỳ 1 Toán 11 năm học 2018 – 2019 sở GD và ĐT Bà Rịa – Vũng Tàu gồm 2 bài thi, bài thi trắc nghiệm gồm 02 trang với 20 câu, chiếm 4,0 điểm, thời gian làm bài 35 phút, bài thi tự luận gồm 4 câu, chiếm 6,0 điểm, thời gian làm bài 55 phút, đề phần tự luận chỉ được phát sau khi đã thu bài làm phần trắc nghiệm, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kỳ 1 Toán 11 năm học 2018 – 2019 sở GD và ĐT Bà Rịa – Vũng Tàu : + Chọn khẳng định SAI. A. Qua ba điểm phân biệt xác định được một và chỉ một mặt phẳng. B. Qua 2 đường thẳng phân biệt cắt nhau xác định được một và chỉ một mặt phẳng. C. Qua 2 đường thẳng phân biệt và song song xác định được một và chỉ một phẳng phẳng. D. Qua một đường thẳng và một điểm nằm ngoài đường thẳng xác định được một và chỉ một mặt phẳng. [ads] + Cho hình đa giác đều (H) có 36 đỉnh, chọn ngẫu nhiên 4 đỉnh của hình (H). Tính xác suất để 4 đỉnh được chọn tạo thành hình vuông? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Giao tuyến của 2 mặt phẳng (SAD) và (SBC) là: A. Đường thẳng qua S và song song với AB. B. Đường thẳng SO. C. Đường thẳng qua S và song song với AD. D. Không có giao tuyến.

Nguồn: toanmath.com

Đọc Sách

Phiếu khảo bài môn Toán 11 học kì 1 - Lê Văn Đoàn
Tài liệu gồm 77 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, tuyển tập phiếu khảo bài môn Toán 11 học kì 1. ĐẠI SỐ & GIẢI TÍCH 11 Phiếu 1.1. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 1. Phiếu 1.2. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 3. Phiếu 2.1. Phương trình lượng giác cơ bản 5. Phiếu 2.2. Phương trình lượng giác cơ bản 7. Phiếu 3.1. Phương trình bậc hai theo một hàm số lượng giác 9. Phiếu 3.2. Phương trình bậc hai theo một hàm số lượng giác 11. Phiếu 4.1. Phương trình bậc nhất đối với sin và cosin (cổ điển) 13. Phiếu 4.2. Phương trình bậc nhất đối với sin và cosin (cổ điển) 15. Phiếu 5.1. Phương trình lượng giác đẳng cấp 17. Phiếu 5.2. Phương trình lượng giác đẳng cấp 19. Phiếu 6.1. Phương trình lượng giác đối xứng 21. Phiếu 6.2. Phương trình lượng giác đối xứng 23. Phiếu 7.1. Quy tắc đếm cơ bản 25. Phiếu 7.2. Quy tắc đếm cơ bản 27. Phiếu 8.1. Hoán vị, tổ hợp, chỉnh hợp 29. Phiếu 8.2. Hoán vị, tổ hợp, chỉnh hợp 31. Phiếu 8.3. Hoán vị, tổ hợp, chỉnh hợp 33. Phiếu 9.1. Nhị thức Newton 35. Phiếu 9.2. Nhị thức Newton 37. Phiếu 9.3. Nhị thức Newton 39. Phiếu 10.1. Xác suất 41. Phiếu 10.2. Xác suất 43. Phiếu 10.3. Xác suất 45. Phiếu 11.1. Cấp số cộng – Cấp số nhân 47. Phiếu 11.2. Cấp số cộng – Cấp số nhân 49. Phiếu 11.2. Cấp số cộng – Cấp số nhân 51. HÌNH HỌC 11 Phiếu 1.1. Tìm giao tuyến và giao điểm 53. Phiếu 1.2. Tìm giao tuyến và giao điểm 55. Phiếu 1.3. Tìm giao tuyến và giao điểm 57. Phiếu 2.1. Tìm thiết diện 59. Phiếu 2.2. Tìm thiết diện 60. Phiếu 3.1. Chứng minh ba điểm thẳng hàng 61. Phiếu 3.2. Chứng minh ba điểm thẳng hàng 62. Phiếu 4.1. Chứng minh hai đường thẳng song song 63. Phiếu 4.2. Chứng minh hai đường thẳng song song 64. Phiếu 5.1. Tìm giao tuyến song song 65. Phiếu 5.2. Tìm giao tuyến song song 67. Phiếu 6.1. Chứng minh đường thẳng song song với mặt phẳng 69. Phiếu 6.2. Chứng minh đường thẳng song song với mặt phẳng 71. Phiếu 7.1. Chứng minh mặt phẳng song song với mặt phẳng 73. Phiếu 7.2. Chứng minh mặt phẳng song song với mặt phẳng 75.