Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 2 Toán 9 năm 2020 - 2021 trường THCS Hoa Lư - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng giữa học kì 2 Toán 9 năm học 2020 – 2021 trường THCS Hoa Lư, thành phố Hồ Chí Minh. Trích dẫn đề thi giữa học kì 2 Toán 9 năm 2020 – 2021 trường THCS Hoa Lư – TP HCM : + Bài kiểm tra môn Toán trong tháng trước của lớp 9A có số bạn đạt điểm giỏi (từ 8 điểm trở lên) bằng một nửa số bạn đạt điểm khá (từ 6,5 đến 7,9 điểm), trong bài kiểm tra Toán tháng này số bạn đạt điểm giỏi tăng thêm 25% so với tháng trước, số bạn đạt điểm khá giảm 9 học sinh so với tháng trước nên số bạn đạt điểm giỏi và khá bằng nhau. Tìm số bạn đạt điểm giỏi môn Toán trong bài kiểm tra tháng trước của lớp 9A. + Một chiếc cầu được thiết kế như hình bên, có độ dài AB = 50 m, chiều cao MK = 6 m. Hãy tính bán kính của đường tròn chứa cung AMB (làm tròn đến chữ số thập phân thứ nhất). (Cho (O) là đường tròn chứa cung AMB, có đường kính MC chứa đường cao MK của chiếc cầu như hình vẽ). K A B M A B C M O K. + Cho 4ABC có ba góc nhọn nội tiếp trong đường tròn (O, R), hai đường cao AM, CN (M ∈ BC, N ∈ AB) của tam giác ABC cắt nhau tại H, tia AM cắt đường tròn (O) tại D. a) Chứng minh tứ giác ANMC nội tiếp. b) Vẽ đường kính AE của đường tròn (O). Chứng minh BC k DE từ đó suy ra tứ giác BDEC là hình thang cân. c) Chứng minh AB · CE + AC · BE = 2R · BC.

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa kì 2 Toán 9 năm 2020 - 2021 phòng GDĐT Hà Đông - Hà Nội
Thứ Tư ngày 31 tháng 03 năm 2021, phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng giữa kì 2 môn Toán lớp 9 năm học 2020 – 2021. Đề thi giữa kì 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Hà Đông – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 04 bài toán, thời gian làm bài 60 phút.
Đề thi giữa HK2 Toán 9 năm 2020 - 2021 trường THCS Hoàng Hoa Thám - Hà Nội
Đề thi giữa HK2 Toán 9 năm 2020 – 2021 trường THCS Hoàng Hoa Thám – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút.
Đề thi giữa kì 2 Toán 9 năm 2020 - 2021 trường Lương Thế Vinh - Hà Nội
Đề thi giữa kì 2 Toán 9 năm học 2020 – 2021 trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi giữa kì 2 Toán 9 năm 2020 – 2021 trường Lương Thế Vinh – Hà Nội : + Hai bạn An và Tâm được phân công chuẩn bị tài liệu cho buổi thuyết trình trước lớp về ý nghĩa của “Giờ trái đất”. Biết rằng nếu hai bạn cùng làm thì sau 2 giờ 24 phút sẽ xong. Nhưng khi làm chung được 1 giờ thì Tâm có việc bận phải về, còn một mình An làm nốt trong 2 giờ 20 phút nữa mới xong. Hỏi nếu mỗi bạn làm một mình thì sau bao lâu sẽ xong công việc? + Cho các đường thẳng (d): y = -2x + 3; (d’): y = (m – 1)x + 2m – 1 và parabol (P): y = x2. a) Tìm tọa độ giao điểm của (d) và (P). b) Tìm m biết đường thẳng (d’) song song với đường thẳng (d). Khi đó, giả sử (d’) cắt Ox tại A, cắt Oy tại B. Tính diện tích tam giác OAB. c) Tìm m để (d’) cắt (P) tại 2 điểm phân biệt D, E sao cho trung điểm I của DE nằm trên Oy. + Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn. Kẻ tiếp tuyến AB với (O) (B là tiếp điểm); đường thẳng d đi qua A và cắt (O) tại C, D (C nằm giữa A và D). Gọi I là trung điểm của CD. a) Chứng minh các điểm A, B, I và O cùng nằm trên một đường tròn. b) Chứng minh AC.AD = AB2. c) Qua B kẻ đường thẳng vuông góc với OA, đường thẳng này cắt (O;R) tại E. Chứng minh AB là tiếp tuyến của (O;R) và góc BEA = 1/2 góc BIE. d) Khi đường thẳng d thay đổi sao cho BDE có ba góc nhọn, gọi H là trực tâm BDE. Tính OA theo R để H chạy trên đường tròn ngoại tiếp ABE.
Đề thi giữa kì 2 Toán 9 năm 2020 - 2021 trường THCS Đống Đa - Hà Nội
Đề thi giữa kì 2 Toán 9 năm học 2020 – 2021 trường THCS Đống Đa, quận Đống Đa, thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi giữa kì 2 Toán 9 năm 2020 – 2021 trường THCS Đống Đa – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Tổng số học sinh của hai lớp 9A và 9B là 93 học sinh. Trong đợt quyên góp sách và ủng hộ các bạn học sinh vùng lũ, trung bình mỗi học sinh lớp 9A ủng hộ 3 quyển, mỗi học sinh lớp 9B ủng hộ 2 quyển nên cả hai lớp ủng hộ được 234 quyển sách vở. Tính số học sinh mỗi lớp 9A và 9B. + Giải hệ phương trình sau + Cho parabol (P) và đường thẳng (d). a) Vẽ parabol (P) và đường thẳng (d) trên cùng một hệ trục tọa độ. b) Tìm tọa độ giao điểm của đường thẳng (d) và parabol (P).