Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 12 môn Toán ôn thi THPTQG năm 2018 2019 trường chuyên Vĩnh Phúc lần 3

Nội dung Đề KSCL lớp 12 môn Toán ôn thi THPTQG năm 2018 2019 trường chuyên Vĩnh Phúc lần 3 Bản PDF Vừa qua, trường THPT chuyên Vĩnh Phúc đã tiếp tục tổ chức kỳ thi khảo sát chất lượng các môn thi THPT Quốc gia năm học 2018 – 2019, đây đã là lần thứ 3 trường THPT chuyên Vĩnh Phúc tổ chức kỳ thi này, mục đích nhằm giúp học sinh được rèn luyện, thử sức thường xuyên để củng cố và nâng cao kiến thức trước khi bước vào kỳ thi chính thức THPT Quốc gia năm học 2018 – 2019 do Bộ Giáo dục và Đào tạo tổ chức. Sytu xin giới thiệu đến thầy, cô và các em học sinh khối 12 nội dung đề KSCL Toán lớp 12 ôn thi THPTQG năm 2018 – 2019 trường chuyên Vĩnh Phúc lần 3, đề bám sát cấu trúc đề minh họa môn Toán năm 2019 của Bộ Giáo dục và Đào tạo với 50 câu trắc nghiệm khách quan, thời gian làm bài thi môn Toán là 90 phút, đề thi có đáp án và lời giải chi tiết. [ads] Trích dẫn đề KSCL Toán lớp 12 ôn thi THPTQG năm 2018 – 2019 trường chuyên Vĩnh Phúc lần 3 : + Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B. Đặt α là góc giữa AB và đáy. Tinh tanα khi thể tích khối tứ diện OO’AB đạt giá trị lớn nhất. + Trong không gian Oxyz, lấy điểm C trên tia Oz sao cho OC = 1. Trên hai tia Ox, Oy lần lượt lấy hai điểm A, B thay đổi sao cho OA + OB = OC. Tìm giá trị nhỏ nhất của bán kính mặt cầu ngoại tiếp tứ diện O.ABC? + Cho hàm số y = f(x) có đạo hàm trên R và đồ thị hàm số y = f'(x) trên R như hình vẽ. Mệnh đề nào sau đây là đúng? A. Hàm số y = f(x) có 1 điểm cực tiểu và không có cực đại. B. Hàm số y = f(x) có 1 điểm cực đại và 2 điểm cực tiểu. C. Hàm số y = f(x) có 1 điểm cực đại và không có cực tiểu. D. Hàm số y = f(x) có 1 điểm cực đại và 1 điểm cực tiểu. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề KSCL thi THPT Quốc gia 2020 môn Toán lần 2 trường THPT chuyên Vĩnh Phúc
Chủ Nhật ngày 24 tháng 05 năm 2020, trường THPT chuyên Vĩnh Phúc, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán 12 lần thứ hai ôn thi THPT Quốc gia năm học 2019 – 2020. Đề KSCL thi THPT Quốc gia 2020 môn Toán lần 2 trường THPT chuyên Vĩnh Phúc mã đề 312 gồm 05 trang với 50 câu trắc nghiệm, học sinh làm bài trong 90 phút, đề thi có đáp án. Trích dẫn đề KSCL thi THPT Quốc gia 2020 môn Toán lần 2 trường THPT chuyên Vĩnh Phúc : + Cho phương trình m.ln(x + 1) – x – 2 = 0. Biết rằng tập hợp tất cả các giá trị của tham số m để phương trình đã cho có hai nghiệm x1 và x2 thỏa mãn 0 < x1 < 2 < 4 < x2 là khoảng (a;+∞). Khi đó a thuộc khoảng nào dưới đây? + Cho hình vuông ABCD cạnh a, trên đường thẳng vuông góc với mặt phẳng (ABCD) tại A ta lấy điểm S di động không trùng với A. Hình chiếu vuông góc của A lên SB và SD lần lượt là H và K. Tìm giá trị lớn nhất của thể tích khối tứ diện ACHK. + Cho hàm số y = f(x). Hàm số y = f'(x) có đồ thị như hình bên. Biết f(-1) = 1 và f(-1/e) = 2. Tìm tất cả các giá trị của m để bất phương trình f(x) < ln(-x) + m nghiệm đúng với mọi x thuộc (-1;-1/e).
Đề KSCL tốt nghiệp THPT 2020 lần 1 Toán 12 trường THPT Tô Hiến Thành - Thanh Hóa
Ngày … tháng 05 năm 2020, trường THPT Tô Hiến Thành, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng tốt nghiệp THPT môn Toán 12 năm học 2019 – 2020 lần thứ nhất. Đề KSCL tốt nghiệp THPT 2020 lần 1 Toán 12 trường THPT Tô Hiến Thành – Thanh Hóa có mã đề 121, đề được biên soạn bám sát cấu trúc đề minh họa THPT 2020 môn Toán lần 2 của Bộ Giáo dục và Đào tạo, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL tốt nghiệp THPT 2020 lần 1 Toán 12 trường THPT Tô Hiến Thành – Thanh Hóa : + Trên một chiếc đài Radio FM có vạch chia để người dùng có thể dò sóng cần tìm. Vạch ngoài cùng bên trái và vạch ngoài cùng bên phải tương ứng với 88Mhz và 108Mhz. Hai vạch này cách nhau 10cm. Biết vị trí của vạch cách vạch ngoài cùng bên trái d (cm) thì có tần số bằng k.a^d Mhz với k và a là hai hằng số. Tìm vị trí tốt nhất của vạch để bắt sóng VOV1 với tần số 102,7 Mhz. A. Cách vạch ngoài cùng bên phải 1,98cm. B. Cách vạch ngoài cùng bên phải 2,46cm. C. Cách vạch ngoài cùng bên trái 7,35cm. D. Cách vạch ngoài cùng bên trái 8,23cm. [ads] + Cho hệ phương trình log3 (x + y) = m và log2 (x^2 + y^2) = 2m, trong đó m là tham số thực. Hỏi có bao nhiêu giá trị của m để hệ phương trình đã cho có đúng hai nghiệm nguyên? + Cho đồ thị hai hàm số f(x) = (2x + 1)/(x + 1) và g(x) = (ax + 1)/(x + 2) với a ≠ 1/2. Tìm các giá trị thực dương của a để các tiệm cận của hai đồ thị hàm số tạo thành một hình chữ nhật có diện tích là 4.
Đề KSCL Toán 12 lần 2 năm 2019 - 2020 trường chuyên Quang Trung - Bình Phước
Nằm trong kế hoạch ôn tập hướng đến kỳ thi THPT Quốc gia 2020 môn Toán, ngày … tháng … năm 2020, trường THPT chuyên Quang Trung, tỉnh Bình Phước tổ chức kỳ thi khảo sát chất lượng môn Toán 12 năm học 2019 – 2020 lần thứ hai. Đề KSCL Toán 12 lần 2 năm 2019 – 2020 trường chuyên Quang Trung – Bình Phước có mã đề 003, đề gồm 08 trang với 50 câu trắc nghiệm, học sinh làm bài trong 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL Toán 12 lần 2 năm 2019 – 2020 trường chuyên Quang Trung – Bình Phước : + Xét các số nguyên dương a, b sao cho phương trình a(lnx)^2 + blnx + 5 = 0 có hai nghiệm phân biệt x1, x2 và phương trình 5(logx)^2 + blogx + a = 0 có hai nghiệm phân biệt x3, x4 sao cho x1x2 > x3x4. Tìm giá trị nhỏ nhất của S = 2a + 3b. + Cho hàm số y = f(x) có đạo hàm liên tục trên và có đồ thị y = f(x) như hình vẽ. Đặt g(x) = f(x – m) – 1/2.(x – m – 1)^2 + 2019 với m là tham số thực. Gọi S là tập hợp các giá trị nguyên dương của m để hàm số y = g(x) đồng biến trên khoảng (5;6). Tổng tất cả các phần tử trong S bằng? [ads] + Cho hình chóp S.ABCD đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD), SA = a. M và K tương ứng là trọng tâm tam giác SAB và SCD; N là trung điểm BC. Thể tích khối tứ diện SMNK bằng m/n.a^3 với m, n thuộc N và (m;n) = 1. Giá trị m + n bằng? + Cho hàm số y = f(x) xác định trên R\{1}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ. Tìm tập hợp tất cả các giá trị của tham số thực m sao cho phương trình f(x) = 2m – 4 có đúng 3 nghiệm thực phân biệt. + Hình đa diện nào dưới đây không có tâm đối xứng: Tứ diện đều; Hình lập phương; Hình bát diện đều; Hình trụ. A.Tứ diện đều. B. Lập phương. C. Bát diện đều. D. Hình trụ.
Đề KSCL Toán THPT Quốc gia 2020 lần 1 trường Nông Cống 1 - Thanh Hóa
Ngày … tháng … năm 2020, trường THPT Nông Cống 1, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng Trung học Phổ thông Quốc gia môn Toán năm học 2019 – 2020 lần thứ nhất. Đề KSCL Toán THPT Quốc gia 2020 lần 1 trường Nông Cống 1 – Thanh Hóa có mã đề 180, đề gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, học sinh có 90 phút để làm bài thi, đề thi có đáp án. Trích dẫn đề KSCL Toán THPT Quốc gia 2020 lần 1 trường Nông Cống 1 – Thanh Hóa : + Một người vay ngân hàng 200 triệu đồng với lãi suất là 0,6% một tháng theo hình thức lãi kép với thỏa thuận: Sau đúng một tháng kể từ ngày vay thì ông bắt đầu trả nợ và đều đặn cứ mỗi tháng người đó sẽ trả cho ngân hàng 9 triệu đồng cho đén khi hết nợ (biết rằng, tháng cuối cùng có thể trả dưới 9 triệu đồng). Hỏi sau bao nhiêu tháng thì người đó trả được hết nợ ngân hàng? [ads] + Cho hình chóp ABCD có đáy ABCD là hình vuông cạnh bằng 2. Cạnh SA = 2 và vuông góc với mặt phẳng (ABC). Gọi M, N lần lượt là hai điểm thay đổi trên cạnh AB, AD (AN < AM) sao cho mặt phẳng (SMC) vuông góc với mặt phẳng (SNC). Khi thể tích khối đa diện S.AMCN đạt giá trị lớn nhất thì giá trị của 1/AN^2 + 16/AM^2 là? + Cho hai hàm số y = (x – 1)(x – 2)(x – 3)(m – |x|) và y = -x^4 + 6x^3 – 5x^2 + 18 có đồ thị lần lượt là (C1) và (C2). Có bao nhiêu giá trị nguyên của tham số m trên đoạn [−2020;2020] để (C1) cắt (C2) tại bốn điểm phân biệt?