Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát đội tuyển HSGQG Toán năm 2022 2023 chuyên Lê Quý Đôn Điện Biên

Nội dung Đề khảo sát đội tuyển HSGQG Toán năm 2022 2023 chuyên Lê Quý Đôn Điện Biên Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi khảo sát đội dự tuyển học sinh giỏi Quốc gia môn Toán năm học 2022 – 2023 trường THPT chuyên Lê Quý Đôn, tỉnh Điện Biên; kỳ thi được diễn ra vào thứ Sáu ngày 26 tháng 08 năm 2022. Trích dẫn đề khảo sát đội tuyển HSGQG Toán năm 2022 – 2023 chuyên Lê Quý Đôn – Điện Biên : + Cho tam giác nhọn ABC không cân tại A, có trực tâm H. Từ B kẻ đường thẳng vuông góc với AC, cắt đường tròn đường kính AC tại hai điểm D và E (D nằm giữa E và B) đồng thời cắt đường thẳng AC tại K. Từ C kẻ đường thẳng vuông góc với AB, cắt đường tròn đường kính AB tại hai điểm F và G (F nằm giữa C và G) đồng thời cắt đường thẳng AB tại L. a) Chứng minh rằng bốn điểm D, F, E, G cùng nằm trên một đường tròn. b) Giả sử KL giao BC tại I. Từ B kẻ đường thẳng vuông góc với AI và cắt đường thẳng LC tại J. Chứng minh rằng H là trung điểm đoạn thẳng CJ. + Cho 2022 số nguyên dương a1, a2, …, a2022 bất kỳ. Có tồn tại hay không vô hạn số nguyên dương n >= 2022 thỏa mãn dãy 2022 số đều là hợp số không? + Cho bảng ô vuông kích thước 100×100 mà mỗi ô được điền một trong các ký tự A, B, C, D sao cho trên mỗi hàng, mỗi cột của bảng thì số lượng ký tự từng loại đúng bằng 25. Ta gọi hai ô thuộc cùng hàng (không nhất thiết kề nhau) nhưng được điền khác ký tự là “cặp tốt”, còn hình chữ nhật có các cạnh song song với bảng và bốn đỉnh của nó được điền đủ bốn ký tự A, B, C, D là “bảng tốt”. a) Hỏi trong các cách điền ở trên, có bao nhiêu cách điền mà mỗi bảng ô vuông 1×4, 4×1 và 2×2 đều có chứa đủ các ký tự A, B, C, D? b) Chứng minh rằng với mọi cách điền thỏa mãn đề bài thì trên bảng ô vuông đã cho: i) Luôn có 2 cột của bảng mà từ đó có thể chọn ra được 76 cặp tốt. ii) Luôn có một bảng tốt.

Nguồn: sytu.vn

Đọc Sách

Đề chọn học sinh giỏi tỉnh Toán 12 năm 2020 - 2021 sở GDĐT Hải Dương
Thứ Tư ngày 21 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Hải Dương tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2020 – 2021. Đề chọn học sinh giỏi tỉnh Toán 12 năm học 2020 – 2021 sở GD&ĐT Hải Dương gồm có 05 bài toán tự luận, đề thi gồm có 01 trang, thời gian làm bài 180 phút. Trích dẫn đề chọn học sinh giỏi tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Hải Dương : + Kết thúc đợt Hội học chào mừng ngày Nhà giáo Việt Nam, lớp 12A có 10 bạn được trao thưởng trong đó có An và Bình. Phần thưởng để trao cho 10 bạn gồm 5 quyển sách Hóa, 7 quyển sách Toán, 8 quyển sách Tiếng Anh (trong đó các quyển sách cùng môn là giống nhau). Mỗi bạn sẽ được nhận 2 quyển sách khác loại. Tìm xác suất để An và Bình có phần thưởng giống nhau. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có B(-1;4). Gọi D, E(-1;2) lần lượt là chân đường cao kẻ từ A, B và M là trung điểm của đoạn thẳng AB. Biết I(-3/2;7/2) là tâm đường tròn ngoại tiếp tam giác DEM. Tìm tọa độ đỉnh C của tam giác ABC. + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và góc BAD = 120°. a) Tính thể tích khối chóp S.ABCD biết SA = SB = SC và khoảng cách từ điểm A đến mặt phẳng (SCD) bằng 3a/4. b) Tính thể tích khối chóp S.ABC biết góc giữa hai mặt phẳng (ABC), (SBC) bằng 45° và tam giác SAB vuông cân tại A.
Đề chọn học sinh giỏi tỉnh Toán 12 năm 2020 - 2021 sở GDĐT Bình Định
Thứ Năm ngày 22 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2020 – 2021. Đề chọn học sinh giỏi tỉnh Toán 12 năm học 2020 – 2021 sở GD&ĐT Bình Định gồm có 05 bài toán tự luận, đề thi gồm có 01 trang, thời gian làm bài 180 phút. Trích dẫn đề chọn học sinh giỏi tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Bình Định : + Tìm tất cả các đa thức với hệ số thực p(x), q(x), r(x) thỏa mãn p(x) – q(x) = r(x).(√p(x) + √q(x)) với mọi số thực x. + Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc và SA = SB = √2, SC = √7. Gọi I là tâm đường tròn nội tiếp tam giác ABC. Mặt phẳng (P) thay đổi, đi qua I, cắt các tia SA, SB, SC lần lượt tại các điểm M, N, P. Tính giá trị nhỏ nhất của thể tích khối chóp S.MNP. + Cho tứ giác ABCD nội tiếp trong đường tròn (O;R). Giả sử các tia phân giác của góc BAD, góc đối đỉnh BCD cắt nhau tại I và đường tròn (I;r) tiếp xúc với các tia đối của các tia BA, DA, CB, CD. Chứng minh rằng: 1/(d + R)^2 + 1/(d – R)^2 = 1/r^2 (với d = OI).
Đề chọn đội tuyển HSG Toán 12 THPT năm 2020 - 2021 sở GDĐT Hà Nội
Vừa qua, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi chọn đội tuyển học sinh giỏi cấp thành phố môn Toán lớp 12 THPT năm học 2020 – 2021; kỳ thi diễn ra vào các ngày 19/10/2020 (ngày thi thứ nhất) và 20/10/2020 (ngày thi thứ hai). Trích dẫn đề chọn đội tuyển HSG Toán 12 THPT năm 2020 – 2021 sở GD&ĐT Hà Nội : + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Các đường cao AD, BE và CF của tam giác ABC đồng quy tại điểm H. Đường thẳng EF cắt đường thẳng BC tại điểm S. Qua S kẻ các tiếp tuyến SX, SY tới đường tròn (O), với X, Y là các tiếp điểm. a) Chứng minh D, X và Y là ba điểm thẳng hàng. b) Gọi I là giao điểm của hai đường thẳng XY và EF. Chứng minh đường thẳng IH đi qua trung điểm của đoạn thẳng BC. + Cho tam giác ABC cân tại A (góc BAC < 90°) và M là trung điểm của đoạn thẳng AB. Lấy điểm N thuộc đoạn thẳng CM sao cho CBN = ACM. a) Chứng minh đường tròn ngoại tiếp tam giác BCN tiếp xúc với đường tròn ngoại tiếp tam giác AMN. b) Đoạn thẳng AC cắt đường tròn ngoại tiếp tam giác AMN tại điểm thứ hai P. Gọi I là trung điểm của đoạn thẳng BC. Chứng minh đường thẳng NP đi qua trung điểm của đoạn thẳng MI.
Đề chọn đội tuyển HSG Toán THPT năm 2020 - 2021 sở GDĐT Hà Tĩnh
Ngày 22 – 23 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Hà Tĩnh tổ chức kỳ thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán THPT năm học 2020 – 2021. Đề chọn đội tuyển HSG Toán THPT năm 2020 – 2021 sở GD&ĐT Hà Tĩnh gồm 02 bài thi với tổng cộng 07 bài toán, thời gian làm bài mỗi bài thi là 180 phút. Trích dẫn đề chọn đội tuyển HSG Toán THPT năm 2020 – 2021 sở GD&ĐT Hà Tĩnh : + Cho phương trình x^n = x + 1. Chứng minh rằng với mỗi n thuộc N và n >= 2, phương trình có nghiệm dương duy nhất, ký hiệu là xn. a. Tính giới hạn của dãy số (un) với un = n(xn – 1). b. Tìm số thực k sao cho dãy số vn = n^k(xn+1 – xn) có giới hạn hữu hạn khác 0. + Cho tam giác nhọn ABC có AB < AC < BC và nội tiếp đường tròn (O;R). Đường thẳng d thay đổi nhưng luôn vuông góc với đoạn thẳng OA và cắt cạnh AB, AC lần lượt tại M, N. Gọi K là giao điểm của đường thẳng BN và CM, P là giao điểm của đường thẳng AK và BC, I là trung điểm của BC. a. Chứng minh tứ giác MNIP nội tiếp được trong một đường tròn. b. Gọi H là trực tâm tam giác AMN. Chứng minh rằng đường thẳng HK luôn đi qua một điểm cố định khi đường thẳng d thay đổi. + Cho bảng vuông n x n ô vuông (n > 2) với các ô vuông được tô bằng hai màu đen hoặc trắng (mỗi ô chỉ tô bởi một màu). Biết rằng mỗi bước, ta chỉ thay đổi màu của toàn bộ các ô trong một hàng hoặc một cột (ô trắng thành đen và ô đen thành trắng). a. Giả sử trong bảng có đúng một ô được tô đen. Hỏi sau một số bước đổi màu các hàng hoặc cột nào đó thì bảng toàn ô trắng được hay không? b. Có tất cả bao nhiêu cấu hình ban đầu sao cho sau hữu hạn bước đổi màu hàng hoặc cột thì bảng gồm toàn ô trắng? (Ví dụ: Cấu hình H1 là một cấu hình thỏa mãn với n = 3).