Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu Toán 9 chủ đề đồ thị của hàm số y ax + b (a khác 0)

Tài liệu gồm 23 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề đồ thị của hàm số y = ax + b (a khác 0) trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Đồ thị của hàm số bậc nhất. 2. Cách vẽ đồ thị hàm số bậc nhất y = ax + b (a khác 0). 3. Chú ý. B. Bài tập và các dạng toán. Dạng 1 : Vẽ đồ thị hàm số bậc nhất. Dạng 2 : Tìm tọa độ giao điểm của hai đường thẳng. Cách giải: Cho hai đường thẳng d y ax b và d y ax b. Để tìm tọa độ giao điểm của d và d’, ta làm như sau: Cách 1: Dùng phương pháp đồ thị (thường sử dụng trong trường hợp d và d’ cắt nhau tại điểm có tọa độ nguyên). – Vẽ d và d’ trên cùng một hệ trục tọa độ. – Xác định tọa độ giao điểm trên hình vẽ. – Chứng tỏ tọa độ giao điểm đó cùng thuộc d và d’. Cách 2: Dùng phương pháp đại số. – Xét phương trình hoành độ giao điểm của d và d’: ax b a x b. – Từ phương trình hoành độ giao điểm, tìm được x và thay vào phương trình của d (hoặc d’) để tìm y. – Kết luận tọa độ giao điểm của d và d’. Dạng 3 : Xét tính đồng quy của ba đường thẳng. Cách giải: Chú ý: Ba đường thẳng đồng quy là ba đường thẳng phân biệt và cùng đi qua 1 điểm. Để xét tính đồng quy của ba đường thẳng (phân biệt) cho trước, ta làm như sau: + Tìm tọa độ giao điểm của 2 trong 3 đường thẳng đã cho. + Kiểm tra xem nếu giao điểm vừa tìm được thuộc đường thẳng còn lại thì kết luận ba đường thẳng đó đồng quy. Dạng 4 : Tính khoảng cách từ gốc tọa độ O đến một đường thẳng không đi qua O. Cách giải: Để tính khoảng cách từ O đến đường thẳng d (không đi qua O) ta làm như sau: Bước 1: Tìm A B lần lượt là giao điểm của d với Ox và Oy. Bước 2: Gọi H là hình chiếu vuông góc của O trên d. Khi đó: 222 1 11 OH OA OB. Dạng 5 : Tìm điểm cố định mà hàm số luôn đi qua phụ thuộc vào tham số m. Cách giải: 1. Khái niệm điểm cố định: Điểm Mxy là điểm cố định của (d y ax b) (a b phụ thuộc vào tham số m a 0) khi và chỉ khi điểm M luôn thuộc (d) với mọi điều kiện của tham số m. Hoặc tương đương với điều kiện: 0 0 y ax b với mội điều kiện của tham số. 2. Cách tìm điểm cố định. Gọi Ix y là điểm cố định của 0 d y ax b m. Biến đổi 0 0 y ax b về dạng Ax y m Bx y hoặc 2 0 0 Ax y m Bx y m Cx y. Từ đó tìm được 0 0 x y rồi kết luận. 3. Chú ý: Cách tính khoảng cách từ Ax y đến Bx y trên hệ trục tọa độ Oxy 2 2 12 12 AB y y x. Dạng 6 : Tìm tham số m sao cho khoảng cách từ gốc tọa độ đến đường thẳng cho trước là lớn nhất. Cách giải: Cho đường thẳng (d y ax b) phụ thuộc tham số m. Muốn tìm m để khoảng cách từ O đến d là lớn nhất, ta có thể làm theo một trong hai cách sau. Cách 1: Phương pháp hình học. – Gọi A B lần lượt là giao điểm của d với Ox và Oy; H là hình chiếu vuông góc của O trên d. – Ta có khoảng cách từ O đến d là OH và được tính bởi công thức sau: 222 1 11 OH OB OC. – Từ đó tìm điều kiện của m để OH đạt giá trị lớn nhất. Cách 2: Dùng phương pháp điểm cố định. – Tìm được I là điểm cố định mà d luôn đi qua. – Gọi H là hình chiếu vuông góc của O trên d OH OI hằng số d ⇒ OH OI. – Ta có: OH OI d max là đường thẳng qua I và vuông góc với OI. Từ đó tìm được tham số m. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề góc với đường tròn
Nội dung Chuyên đề góc với đường tròn Bản PDF - Nội dung bài viết Chuyên đề góc với đường tròn: Hướng dẫn giải toán học chương 3 Hình học lớp 9 Chuyên đề góc với đường tròn: Hướng dẫn giải toán học chương 3 Hình học lớp 9 Chuyên đề góc với đường tròn là một phần quan trọng của chương trình Hình học lớp 9. Tài liệu này gồm 30 trang, cung cấp hướng dẫn chi tiết về cách giải các dạng toán liên quan đến góc trong đường tròn. Chúng ta sẽ tìm hiểu về các loại góc như góc ở tâm, góc nội tiếp, góc tạo bởi tiếp tuyến và dây cung. Trước tiên, để tính số đo của góc ở tâm, chúng ta cần biết rằng số đo của cung bị chắn bởi góc ở tâm chính là số đo của góc đó. Ngoài ra, chúng ta có thể sử dụng các kiến thức về tỉ lệ lượng giác, quan hệ đường kính và dây cung để giải các bài tập về góc ở tâm. Chủ đề tiếp theo là về góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung. Điểm chung chính là hai góc nội tiếp chắn bởi cùng một cung sẽ bằng nhau. Chúng ta cũng cần quan tâm đến các quy tắc về góc vuông, góc nội tiếp có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung. Chủ đề cuối cùng nói về góc có đỉnh bên trong và bên ngoài đường tròn. Khi gặp các bài toán liên quan đến góc này, chúng ta có thể tính số đo của chúng dựa vào số đo của các cung bị chắn. Quan trọng nhất là nhớ rằng số đo của góc nội tiếp bằng nửa số đo của góc ở tâm cùng chắn một cung. Cuối cùng, tài liệu còn cung cấp một số bài tập thực hành về góc với đường tròn, từ các dạng cơ bản đến phức tạp. Qua việc giải các bài tập này, học sinh sẽ củng cố kiến thức và kỹ năng giải toán, từ đó nắm vững chương trình Hình học lớp 9 chương 3. Đây thực sự là một tài liệu hữu ích giúp học sinh hiểu rõ hơn về chuyên đề góc với đường tròn và áp dụng kiến thức vào việc giải các bài tập thực tế.
Chuyên đề hệ thức lượng trong tam giác vuông
Nội dung Chuyên đề hệ thức lượng trong tam giác vuông Bản PDF - Nội dung bài viết Chuyên đề hệ thức lượng trong tam giác vuông Chuyên đề hệ thức lượng trong tam giác vuông Chuyên đề này bao gồm 26 trang tài liệu, hướng dẫn cách sử dụng các hệ thức lượng trong tam giác vuông để giải các dạng bài tập liên quan trong chương trình Hình học lớp 9 chương 1. Vấn đề 1: Hệ thức về cạnh và đường cao trong tam giác vuông Phần này bao gồm lý thuyết và bài tập về cách tính cạnh và đường cao trong tam giác vuông. Vấn đề 2: Tỉ số lượng giác của góc nhọn Phần này giải thích về công thức tỉ số lượng giác của góc nhọn, bao gồm định nghĩa, định lí, hệ thức cơ bản và so sánh các tỉ số lượng giác. Vấn đề 3: Một số hệ thức về cạnh và góc trong tam giác vuông Phần này trình bày định lí và cách giải tam giác vuông dựa trên các hệ thức về cạnh và góc trong tam giác. Vấn đề 4: Giải bài toán hệ thức lượng bằng phương pháp đại số Phần này hướng dẫn cách giải các bài toán hệ thức lượng trong tam giác vuông bằng phương pháp đại số. Vấn đề 5: Bài tập về hệ thức lượng trong tam giác vuông Phần này cung cấp các bài tập thực hành về hệ thức lượng trong tam giác vuông để học sinh rèn luyện kỹ năng giải bài tập.
Chuyên đề hệ phương trình bậc nhất hai ẩn
Nội dung Chuyên đề hệ phương trình bậc nhất hai ẩn Bản PDF - Nội dung bài viết Chuyên đề hệ phương trình bậc nhất hai ẩn Chuyên đề hệ phương trình bậc nhất hai ẩn Tài liệu này bao gồm 77 trang, hướng dẫn cách giải các dạng toán liên quan đến hệ phương trình bậc nhất hai ẩn, giúp học sinh hiểu rõ chương trình Đại số lớp 9 chương 3: Hệ hai phương trình bậc nhất hai ẩn. A. Kiến thức trọng tâm Bộ tài liệu này chủ yếu tập trung vào việc giải các dạng toán đặc biệt về hệ phương trình bậc nhất hai ẩn và cách tiếp cận vấn đề. B. Các dạng toán và phương pháp giải I. Phương pháp thế Dạng Toán lớp 1: Giải hệ phương trình bằng phương pháp thế. Dạng Toán lớp 2: Giải hệ phương trình bằng phương pháp thế và quy về hệ phương trình bậc nhất hai ẩn. Dạng Toán lớp 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. Dạng Toán lớp 4: Xác định điều kiện để hệ phương trình có nghiệm thỏa mãn điều kiện đã cho. II. Phương pháp cộng đại số Dạng Toán lớp 1: Giải hệ phương trình bằng phương pháp cộng đại số. Dạng Toán lớp 2: Giải hệ phương trình bằng phương pháp cộng đại số và quy về hệ phương trình bậc nhất hai ẩn. Dạng Toán lớp 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. Dạng Toán lớp 4: Tìm điều kiện của tham số để hệ phương trình có nghiệm thỏa mãn điều kiện cho trước. III. Sử dụng phương pháp đặt ẩn phụ Chương này tập trung vào việc sử dụng phương pháp đặt ẩn phụ để giải các bài toán liên quan đến hệ phương trình bậc nhất hai ẩn. C. Bài tập trắc nghiệm hệ phương trình bậc nhất hai ẩn Bộ tài liệu này cũng cung cấp các bài tập trắc nghiệm để học sinh ôn tập và kiểm tra kiến thức của mình về chủ đề này. D. Đáp án và hướng dẫn giải Để giúp học sinh tự kiểm tra và tự học thêm, tài liệu kèm theo đáp án và hướng dẫn chi tiết cách giải các bài tập.
Chuyên đề hàm số bậc nhất và các bài toán liên quan
Nội dung Chuyên đề hàm số bậc nhất và các bài toán liên quan Bản PDF - Nội dung bài viết Chuyên đề hàm số bậc nhất và các bài toán liên quan Chuyên đề hàm số bậc nhất và các bài toán liên quan Tài liệu này bao gồm 64 trang, tổng hợp kiến thức cần nhớ, phân dạng và hướng dẫn giải các dạng bài tập chuyên đề về hàm số bậc nhất và các bài toán liên quan. Đây là tài liệu hữu ích để học sinh nắm vững chương trình Đại số lớp 9 chương 2.1, bao gồm: Nhắc lại và bổ sung các khái niệm về hàm số: Bao gồm các dạng toán lớp 1 như tìm điều kiện xác định của hàm số, dạng toán lớp 2 với việc tính giá trị hàm số khi cho giá trị của ẩn, dạng toán lớp 3 để xác định điểm thuộc (không thuộc) đồ thị hàm số, và dạng toán lớp 4 với sự đồng biến, nghịch biến của hàm số. Hàm số bậc nhất và đồ thị hàm số bậc nhất: Bao gồm các dạng toán lớp 1 với hàm số bậc nhất và sự đồng biến, nghịch biến của hàm số bậc nhất, dạng toán lớp 2 với đồ thị hàm số y = ax và hệ số góc của đường thẳng y = ax, dạng toán lớp 3 với đồ thị hàm số y = ax + b (với a khác 0), và dạng toán lớp 4 với hệ số góc của đường thẳng, đường thẳng song song và đường thẳng cắt nhau. Tổng hợp một số bài toán liên quan đến hàm số bậc nhất trong các đề tuyển sinh vào 10 môn Toán. Đáp án và hướng dẫn giải: Tài liệu cung cấp đáp án và hướng dẫn giải chi tiết cho các bài toán, giúp học sinh hiểu rõ về cách giải các dạng bài tập. Đây là tài liệu hữu ích để học sinh nắm vững nội dung chương trình Đại số và rèn luyện kỹ năng giải bài tập một cách hiệu quả.