Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG huyện lớp 8 môn Toán năm 2015 2016 phòng GD ĐT Cẩm Giàng Hải Dương

Nội dung Đề giao lưu HSG huyện lớp 8 môn Toán năm 2015 2016 phòng GD ĐT Cẩm Giàng Hải Dương Bản PDF - Nội dung bài viết Đề giao lưu HSG huyện lớp 8 môn Toán năm 2015 2016 phòng GD ĐT Cẩm Giàng Hải Dương Đề giao lưu HSG huyện lớp 8 môn Toán năm 2015 2016 phòng GD ĐT Cẩm Giàng Hải Dương Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 8 đề giao lưu HSG huyện Toán lớp 8 năm 2015 – 2016 của phòng GD&ĐT Cẩm Giàng, Hải Dương. Đề thi này bao gồm các câu hỏi chi tiết và đáp án, giúp các em ôn tập và kiểm tra kiến thức một cách hiệu quả. Trích đề giao lưu HSG huyện Toán lớp 8 năm 2015 – 2016 phòng GD&ĐT Cẩm Giàng – Hải Dương: - Cho tam giác ABC nhọn (AB < AC). Các đường cao AE, BF, CG cắt nhau tại H. Gọi M là trung điểm của BC, qua H vẽ đường thẳng a vuông góc với HM, a cắt AB, AC lần lượt tại I và K. a) Chứng minh tam giác ABC đồng dạng với tam giác EFC. b) Qua C kẻ đường thẳng b song song với đường thẳng IK, b cắt AH, AB theo thứ tự tại N và D. Chứng minh NC = ND và HI = HK. c) Chứng minh. - Tìm đa thức f(x) biết rằng: f(x) chia cho x – 2 dư 10, f(x) chia cho x + 2 dư 26, f(x) chia cho x2 – 4 được thương là -5x và còn dư. - Cho a, b, c là 3 cạnh của một tam giác. Chứng minh rằng. Đây là một đề thi mang tính thách thức và phù hợp để các em học sinh lớp 8 rèn luyện và nâng cao kiến thức Toán của mình. Chúc các em ôn tập tốt và thành công!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Quỳnh Phụ - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quỳnh Phụ, tỉnh Thái Bình. Trích dẫn đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Quỳnh Phụ – Thái Bình : + Xác định đa thức P(x), biết P(x) chia cho đa thức x + 1 dư 4, P(x) chia cho đa thức x + 2 dư 6, P(x) chia cho đa thức x2 + 3x + 2 được thương là x + 3 và còn dư. Cho ba số dương a, b, c thoả mãn a + b + c = 1. Tìm giá trị nhỏ nhất của biểu thức: M = 1/a + 1/4b + 1/16c. + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Trên tia HC lấy điểm M sao cho HM = AH. Vẽ hình bình hành AHMN, MN cắt AC tại E. Vẽ hình bình hành BAED. Chứng minh: a. AB = AE b. Ba đường thẳng AD, BE, HN đồng quy và DM // HN. + Cho tam giác ABC có góc ABC = 120°, các đường phân giác BD, AE, CF. a. Chứng minh rằng: 1/BD = 1/BA + 1/BC. b. Tính góc EDF.
Đề học sinh giỏi lần 2 Toán 8 năm 2022 - 2023 phòng GDĐT Thủ Đức - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi lần thứ 2 môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Thủ Đức, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi lần 2 Toán 8 năm 2022 – 2023 phòng GD&ĐT Thủ Đức – TP HCM : + Cho tam giác ABC có ba góc nhọn (AB < AC) có ba đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh: BFC đồng dạng BDA và BFD = ACB. b) Tia EF cắt đường thẳng BC tại K. Chứng minh: CD.FK = CK.FD. c) Gọi M là trung điểm của BC. Qua M vẽ đường thẳng vuông góc với HM, đường thẳng này cắt các đường thẳng AB, AD, AC lần lượt tại P, Q, R. Chứng minh: PQ = QR. + Hai địa điểm A và B cách nhau 200 km. Cùng một lúc một xe ô tô khởi hành từ A và một xe máy khởi hành từ B đi ngược chiều nhau. Xe ô tô và xe máy gặp nhau tại điểm C cách A 120 km. Nếu xe ô tô khởi hành sau xe máy một giờ thì sẽ gặp nhau tại điểm D cách C một khoảng là bao nhiêu km? Biết rằng vận tốc của xe ô tô lớn hơn vận tốc của xe máy là 20 km/h. + Cho tứ giác ABCD có các điểm M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Gọi I là điểm nằm trong tứ giác ABCD. Tính diện tích tứ giác ABCD biết SAMIQ = 32 (cm2), SBMIN = 50 (cm2) và SDPIQ = 20 (cm2).
Đề học sinh giỏi Toán THCS năm 2022 - 2023 phòng GDĐT thành phố Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán THCS cấp thành phố năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Thanh Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 10 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi Toán THCS năm 2022 – 2023 phòng GD&ĐT thành phố Thanh Hóa : + Tìm nghiệm nguyên của phương trình: x2y2 = 4x2y – y3 – 4×2 + 3y2 − 1. + Cho số tự nhiên n ≥ 2 và số nguyên tố p thoả mãn p − 1 chia hết cho n đồng thời n3 − 1 chia hết cho p. Chứng minh rằng: n + p là một số chính phương. + Cho hình vuông ABCD cạnh a. Trên cạnh BC lấy điểm M (khác B và C), qua điểm A kẻ tia Ax vuông góc với AM cắt tia CD tại điểm F. 1) Chứng minh rằng: AM = AF. 2) Trên cạnh CD lấy điểm N sao cho MAN = 45°, gọi giao điểm của AM, AN với BD lần lượt tại Q và P; gọi I là giao điểm của MP và NQ. Chứng minh: AI vuông góc MN tại H. 3) Tìm giá trị nhỏ nhất của diện tích tam giác AMN khi M, N thay đổi.
Đề HSG cấp huyện Toán 8 năm 2022 - 2023 phòng GDĐT Anh Sơn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Anh Sơn, tỉnh Nghệ An. Trích dẫn Đề HSG cấp huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Anh Sơn – Nghệ An : + Tìm n thuộc N để giá trị biểu thức sau là số nguyên tố C = n3 – n2 + n – 1. + Cho hình chữ nhật ABCD. Trên đường chéo BD lấy điểm P. Gọi M là điểm đối xứng với C qua P. Gọi E và F lần lượt là hình chiếu của M lên AB, AD. Chứng minh rằng: a) Tứ giác AEMF là hình chữ nhật b) Tứ giác ADBM là hình thang c) Ba điểm E, F, P thẳng hàng. + Cho hình thang ABCD (AB // CD). Gọi O là giao điểm hai đường chéo AC và BD. Từ A vẽ đường thẳng song song với BC cắt BD tại E. Từ B vẽ đường thẳng song song với AD cắt AC tại G. Chứng minh rằng: a) OE/OB = OG/OA. b) AB2 = EG.DC.