Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương trình quy về phương trình bậc hai

Nội dung Chuyên đề phương trình quy về phương trình bậc hai Bản PDF - Nội dung bài viết Chuyên đề phương trình bậc hai: Tài liệu học tập toàn diện Chuyên đề phương trình bậc hai: Tài liệu học tập toàn diện Tài liệu Chuyên đề phương trình quy về phương trình bậc hai, được biên soạn bởi tác giả Toán Học Sơ Đồ, là một nguồn kiến thức vô cùng hữu ích cho học sinh. Với 39 trang sách, tài liệu tổng hợp các kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm. Đây là nguồn tư liệu quý giá để hỗ trợ học sinh trong quá trình nắm vững chương trình Đại số 9 chương 4 bài số 7. A. TRỌNG TÂM CẦN ĐẠT: I. TÓM TẮT LÝ THUYẾT: 1. Phương trình trùng phương. 2. Phương trình chứa ẩn ở mẫu thức. 3. Phương trình đưa về dạng tích. 4. Một số dạng khác của phương trình thường gặp. II. BÀI TẬP VÀ CÁC DẠNG TOÁN: Dạng 1. Giải phương trình trùng phương: + Bước 1: Đặt t = x^2 (t ≥ 0) ta được phương trình bậc hai. + Bước 2: Giải phương trình bậc hai ẩn t để tìm nghiệm của phương trình trùng phương. Dạng 2. Phương trình chứa ẩn ở mẫu thức: + Bước 1: Tìm điều kiện xác định của ẩn. + Bước 2: Quy đồng mẫu thức hai vế rồi khử mẫu. + Bước 3: Giải phương trình bậc hai nhận được ở bước 2. Dạng 3. Phương trình đưa về dạng tích: + Bước 1: Chuyển vế và phân tích vế trái thành nhân tử, vế phải bằng 0. + Bước 2: Xét từng nhân tử bằng 0 để tìm nghiệm. Dạng 4. Giải phương trình bằng phương pháp đặt ẩn phụ: + Bước 1: Đặt điều kiện xác định (nếu có). + Bước 2: Đặt ẩn phụ và giải phương trình theo ẩn mới. + Bước 3: So sánh nghiệm tìm được với điều kiện xác định và kết luận. Dạng 5. Phương trình chứa biểu thức trong dấu căn: Làm mất dấu căn bằng cách đặt ẩn phụ hoặc lũy thừa hai vế. Dạng 6. Một số dạng khác: Không chỉ giới hạn trong các phương pháp trên, ta còn dùng các phương pháp hằng đẳng thức, thêm bớt hạng tử, hoặc đánh giá hai vế để giải phương trình. III. BÀI TẬP VỂ NHÀ: Tài liệu cũng cung cấp bài tập cho học sinh để rèn luyện và nâng cao kiến thức sau giờ học. B. NÂNG CAO PHÁT TRIỂN TƯ DUY: Để giúp học sinh phát triển tư duy, tài liệu cung cấp phần bài tập nâng cao để đề cao khả năng logic và suy luận. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ: Phần này giúp học sinh củng cố kiến thức thông qua các câu hỏi trắc nghiệm, rèn luyện khả năng phản xạ nhanh nhạy. D. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO: Để hỗ trợ học sinh tự học, tài liệu cung cấp phiếu bài tập cơ bản và nâng cao để học sinh có thể tự luyện tập và kiểm tra kiến thức của mình.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề tính diện tích tam giác, diện tích tứ giác nhờ sử dụng các tỉ số lượng giác
Nội dung Chuyên đề tính diện tích tam giác, diện tích tứ giác nhờ sử dụng các tỉ số lượng giác Bản PDF - Nội dung bài viết Chuyên đề tính diện tích tam giác, diện tích tứ giác Chuyên đề tính diện tích tam giác, diện tích tứ giác Tài liệu này được biên soạn bởi tác giả Toán Học Sơ Đồ, gồm 14 trang, nhằm tổng hợp kiến thức trọng tâm về tính diện tích tam giác, diện tích tứ giác bằng cách sử dụng các tỉ số lượng giác. Đây là tài liệu hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 1 bài số 4. A. CÁC KIẾN THỨC CẦN NHỚ Trong tam giác vuông, diện tích S được tính bằng công thức S = 1/2ah, trong đó a là độ dài một cạnh của tam giác, h là chiều cao tương ứng với cạnh đó. Bên cạnh đó, tài liệu này cũng hướng dẫn vận dụng các tỉ số lượng giác và hệ thức về cạnh, góc trong tam giác vuông để xây dựng thêm các công thức tính diện tích tam giác, tứ giác. B. BÀI TẬP MINH HỌA Tài liệu cung cấp các ví dụ minh họa về cách tính diện tích tam giác, tứ giác, chứng minh các hệ thức, tính số đo góc và độ dài các cạnh. C. BÀI TẬP TỰ LUYỆN Phần này bao gồm các bài tập tự luyện với các dạng bài tập đa dạng như tính diện tích, chứng minh hệ thức, tính số đo góc và độ dài cạnh. Học sinh có thể sử dụng phần này để ôn tập và nâng cao kiến thức của mình. D. HƯỚNG DẪN GIẢI Cuối cùng, tài liệu cung cấp hướng dẫn giải chi tiết cho các bài tập trong phần tự luyện, giúp học sinh hiểu rõ cách giải từng bước và áp dụng vào bài tập tương tự.
Chuyên đề ứng dụng thực tế các tỉ số lượng giác của góc nhọn, thực hành ngoài trời
Nội dung Chuyên đề ứng dụng thực tế các tỉ số lượng giác của góc nhọn, thực hành ngoài trời Bản PDF - Nội dung bài viết Chuyên đề ứng dụng thực tế tỉ số lượng giác của góc nhọn ngoài trời Chuyên đề ứng dụng thực tế tỉ số lượng giác của góc nhọn ngoài trời Tài liệu này bao gồm 13 trang được viết bởi tác giả Toán Học Sơ Đồ, nhằm tổng hợp kiến thức về tỉ số lượng giác của góc nhọn và hướng dẫn cách áp dụng chúng vào thực tế khi thực hành ngoài trời. Tài liệu này hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 1 bài số 5. A. Kiến thức cần nhớ: Tài liệu này giúp học sinh vận dụng linh hoạt kiến thức về tỉ số lượng giác của góc nhọn vào việc giải các bài tập thực tế. B. Bài tập minh họa cơ bản nâng cao: I. Bài tập củng cố kiến thức bản chất toán: Bài tập trong tài liệu giúp học sinh củng cố và hiểu rõ hơn về tỉ số lượng giác của góc nhọn. II. Bài tập vận dụng vào thực tế: Tài liệu cũng cung cấp các bài tập giúp học sinh áp dụng kiến thức về tỉ số lượng giác vào các tình huống thực tế, từ đó nắm vững và hiểu sâu hơn về chủ đề này.
Chuyên đề một số hệ thức về cạnh và góc trong tam giác vuông
Nội dung Chuyên đề một số hệ thức về cạnh và góc trong tam giác vuông Bản PDF - Nội dung bài viết Tài liệu Chuyên đề về cạnh và góc trong tam giác vuông Tài liệu Chuyên đề về cạnh và góc trong tam giác vuông Tài liệu này có tổng cộng 52 trang và được biên soạn bởi tác giả Toán Học Sơ Đồ. Nội dung của tài liệu tập trung vào việc tổng hợp kiến thức quan trọng về cạnh và góc trong tam giác vuông, cung cấp phân dạng và hướng dẫn cách giải các dạng bài tập tự luận & trắc nghiệm liên quan đến chuyên đề này. Tài liệu này sẽ hỗ trợ học sinh trong quá trình học tập chương trình Hình học lớp 9, đặc biệt là trong bài số 4 về tam giác vuông. Nội dung cụ thể bao gồm: KIẾN THỨC CẦN NHỚ: I. Định lí cơ bản: Trong một tam giác vuông, mỗi cạnh góc vuông bằng: Cạnh huyền nhân với sin góc đối hoặc nhân với cosin góc kề. Cạnh góc vuông kia nhân với tang góc đối hoặc nhân với cotang góc kề. II. Giải tam giác vuông: Là tìm tất cả các cạnh và góc của tam giác vuông khi biết hai yếu tố của nó (trong đó ít nhất có một yếu tố về độ dài). CÁC DẠNG BÀI BẢN CƠ BẢN VÀ NÂNG CAO BÀI TẬP TỰ LUYỆN TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ Tài liệu này cung cấp cho bạn những kiến thức cơ bản và nâng cao về cạnh và góc trong tam giác vuông, giúp bạn nắm vững và áp dụng chúng vào việc giải các bài tập một cách hiệu quả. Hãy cùng tìm hiểu và rèn luyện kỹ năng qua tài liệu này để đạt được kết quả tốt trong môn Toán!
Chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông
Nội dung Chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông Bản PDF - Nội dung bài viết Tài liệu "Chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông" Tài liệu "Chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông" Tài liệu này gồm 30 trang, đã được biên soạn bởi tác giả Toán Học Sơ Đồ, nhằm tổng hợp kiến thức quan trọng về tỉ số lượng giác của góc nhọn và hệ thức về cạnh và góc trong tam giác vuông. Được xem là công cụ hữu ích để hỗ trợ học sinh trong quá trình học tập môn Hình học 9 chương 1. A. KIẾN THỨC CẦN NHỚ Trong phần này, tài liệu tập trung vào việc giải thích các kiến thức cơ bản về tỉ số lượng giác, hệ thức về cạnh và góc trong tam giác vuông. B. CÁC DẠNG BÀI TẬP CƠ BẢN VÀ NÂNG CAO 1. Dạng 1: Các bài toán tính toán: Tài liệu sẽ hướng dẫn học sinh về cách giải các bài tập tính toán với các bước cụ thể như đặt độ dài cạnh, góc bằng ẩn và giải phương trình để tìm kết quả cuối cùng. 2. Dạng 2: Chứng minh đẳng thức, mệnh đề: Hướng dẫn cách biến đổi mệnh đề về dạng đẳng thức và chứng minh các vế bằng nhau thông qua việc sử dụng hệ thức lượng và kiến thức đã học. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ Phần này cung cấp các câu hỏi trắc nghiệm để học sinh tự kiểm tra kiến thức và kỹ năng của mình. D. HƯỚNG DẪN GIẢI Cuối cùng, tài liệu sẽ cung cấp hướng dẫn chi tiết cách giải các bài tập, giúp học sinh hiểu rõ hơn về cách áp dụng kiến thức vào thực hành.