Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic lớp 8 môn Toán năm 2018 2019 phòng GD ĐT TX Thái Hòa Nghệ An

Nội dung Đề Olympic lớp 8 môn Toán năm 2018 2019 phòng GD ĐT TX Thái Hòa Nghệ An Bản PDF - Nội dung bài viết Đề Thi Olympic Toán Lớp 8 Năm 2018 - 2019 Phòng GD&ĐT TX Thái Hòa Nghệ An Đề Thi Olympic Toán Lớp 8 Năm 2018 - 2019 Phòng GD&ĐT TX Thái Hòa Nghệ An Sytu xin gửi đến các em học sinh lớp 8 đề thi Olympic Toán lớp 8 năm 2018 - 2019 của phòng Giáo dục và Đào tạo Thị xã Thái Hòa - Nghệ An. Đề thi này nhằm mục đích giao lưu và tìm kiếm các em học sinh giỏi môn Toán lớp 8 đang học tại các trường THCS tại Thị xã Thái Hòa, tỉnh Nghệ An. Đề thi Olympic Toán lớp 8 năm 2018 - 2019 của phòng Giáo dục và Đào tạo Thị xã Thái Hòa - Nghệ An được thiết kế theo hình thức tự luận với 05 bài toán, thời gian làm bài là 90 phút. Dưới đây là một số câu hỏi trong đề thi: Cho tam giác ABC vuông tại A, có trung tuyến AM và đường cao AH. Trên nửa mặt phẳng bờ BC, kẻ hai tia Ax và Cy vuông góc với BC. Qua A, kẻ đường thẳng vuông góc với AM cắt Bx và Cy lần lượt tại P và Q. Chứng minh: a) AP = BP và AQ = CQ. b) PC đi qua trung điểm I của AH. c) Khi BC cố định, BC = 2a, điểm A chuyển động sao cho BAC = 90°. Tìm vị trí điểm H trên đoạn thẳng BC để diện tích tam giác ABH đạt giá trị lớn nhất, tìm giá trị lớn nhất đó. Cho phân thức: P = (n^3 + 2n^2 - 1)/(n^3 + 2n^2 + 2n + 1). a) Hãy tìm điều kiện xác định và rút gọn phân thức trên. b) Chứng minh rằng nếu n là một số nguyên thì giá trị phân thức tìm được trong câu a luôn là một phân số tối giản. Tìm đa thức f(x) biết: f(x) chia cho x - 2 dư 5; f(x) chia cho x - 3 dư 7; f(x) chia cho (x - 2)(x - 3) được thương là x^2 - 1 và đa thức dư là đa thức bậc nhất đối với x. Đây là một số câu hỏi thú vị và thách thức trong đề thi Olympic Toán lớp 8 năm 2018 - 2019 của phòng Giáo dục và Đào tạo Thị xã Thái Hòa - Nghệ An. Chúc các em học sinh lớp 8 tham gia đề thi này đạt kết quả cao và có trải nghiệm học tập thú vị!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG lớp 8 môn Toán năm 2020 2021 phòng GD ĐT thành phố Vinh Nghệ An
Nội dung Đề thi HSG lớp 8 môn Toán năm 2020 2021 phòng GD ĐT thành phố Vinh Nghệ An Bản PDF - Nội dung bài viết Đề thi HSG lớp 8 môn Toán năm 2020-2021 phòng GD&ĐT thành phố Vinh Nghệ An Đề thi HSG lớp 8 môn Toán năm 2020-2021 phòng GD&ĐT thành phố Vinh Nghệ An Ngày ... tháng 04 năm 2021, Phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An đã tổ chức kỳ thi khảo sát chất lượng học sinh giỏi môn Toán lớp 8 năm học 2020-2021. Đề thi HSG Toán lớp 8 năm 2020-2021 của phòng GD&ĐT thành phố Vinh - Nghệ An bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút. Dưới đây là một số câu hỏi trích dẫn từ đề thi HSG Toán lớp 8 năm 2020-2021 của phòng GD&ĐT thành phố Vinh - Nghệ An: + Chứng minh rằng: 11^100 - 1 chia hết cho 1000. + Cho đa thức f(x) chia cho đa thức x - 2 dư 7, chia cho đa thức x^2 + 1 dư 3x + 5. Hỏi dư trong phép chia đa thức f(x) cho đa thức (x^2 + 1)(x - 2) là bao nhiêu? + Trong tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). Điểm D trên tia HC sao cho HD = HA. Đường vuông góc với BC tại D cắt AC ở E. a. Chứng minh rằng tam giác BEC đồng dạng với tam giác ADC. b. Gọi M là trung điểm của BE. Chứng minh rằng BM.BE = BC.BH. Tính số đo góc AHM. c. Tia AM cắt BC tại G. Chứng minh rằng GB.AH + GB.HC = BC.HD. Đây là một số ví dụ về những câu hỏi thú vị và đầy thách thức trong đề thi HSG Toán lớp 8 năm 2020-2021 của phòng GD&ĐT thành phố Vinh - Nghệ An. Chắc chắn rằng các em học sinh đã cần phải chuẩn bị kỹ lưỡng và tự tin để đối mặt với những bài toán này. Chúc các em thành công trong kỳ thi của mình!
Đề thi Olympic lớp 8 môn Toán cấp huyện năm 2020 2021 phòng GD ĐT Ba Vì Hà Nội
Nội dung Đề thi Olympic lớp 8 môn Toán cấp huyện năm 2020 2021 phòng GD ĐT Ba Vì Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic Toán lớp 8 cấp huyện năm 2020 – 2021 phòng GD&ĐT Ba Vì – Hà Nội Đề thi Olympic Toán lớp 8 cấp huyện năm 2020 – 2021 phòng GD&ĐT Ba Vì – Hà Nội Ngày Thứ Năm 22 tháng 04 năm 2021, phòng Giáo dục và Đào tạo huyện Ba Vì, thành phố Hà Nội đã tổ chức kỳ thi Olympic cấp huyện môn Toán lớp 8 năm học 2020-2021. Đề thi Olympic Toán lớp 8 cấp huyện năm 2020-2021 phòng GD&ĐT Ba Vì - Hà Nội bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Cụ thể một số câu hỏi trong đề thi: Tìm các số nguyên x, y thỏa mãn: xy - 4 = 2x + 3y. Tìm các số nguyên x sao cho A = x(x - 1)(x - 7)(x - 8) là một số chính phương. Cho hình thoi ABCD có BAD = 60°. Qua C vẽ đường thẳng d bất kì không cắt cạnh của hình thoi ABCD, nhưng d cắt tia AB tại E và cắt tia AD tại F. a) Chứng minh BCE đồng dạng DFC. b) Chứng minh BD2 = BE.DF. c) Gọi I là giao điểm của BF và DE. Tính số đo góc EIF.
Đề thi Olimpic lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Quốc Oai Hà Nội
Nội dung Đề thi Olimpic lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Quốc Oai Hà Nội Bản PDF - Nội dung bài viết Đề thi Olimpic Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Quốc Oai - Hà Nội Đề thi Olimpic Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Quốc Oai - Hà Nội Xin chào quý thầy cô và các em học sinh lớp 8! Sytu xin giới thiệu đến các bạn đề thi Olimpic Toán lớp 8 năm 2020 - 2021 từ phòng GD&ĐT Quốc Oai - Hà Nội. Hãy cùng nhau vào bài thi và thách thức khả năng toán học của mình! Trích dẫn một số câu hỏi trong đề thi: + Câu 1: Cho a, b là bình phương của 2 số nguyên lẻ liên tiếp. Chứng minh rằng ab - a - b + 1 chia hết cho 48. + Câu 2: Một mảnh đất hình thang ABCD có AB//CD, AB = BC = AD = a, CD = 2a. a/ Tính các góc của hình thang ABCD. b/ Tính diện tích của hình thang ABCD theo a. c/ Chia mảnh đất ABCD thành 4 mảnh đất hình thang giống hệt nhau bằng nhau. + Câu 3: Cho tam giác ABC. Trên cạnh AB lấy D, trên cạnh AC lấy E sao cho AD = AB, CE = 1/3.AC, CD và BE cắt nhau tại I. Hãy tính các tỷ số liên quan đến tam giác. Hãy tự tin và thử sức với đề thi Olimpic Toán lớp 8 năm 2020 - 2021, chắc chắn rằng sẽ có những trải nghiệm toán học thú vị và bổ ích!
Đề thi Olympic lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Gia Lâm Hà Nội
Nội dung Đề thi Olympic lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Gia Lâm Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Gia Lâm - Hà Nội Đề thi Olympic Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Gia Lâm - Hà Nội Đề thi Olympic Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Gia Lâm - Hà Nội bao gồm 01 trang với 04 bài toán dạng tự luận. Thời gian làm bài cho kỳ thi này là 90 phút. Kỳ thi sẽ diễn ra vào ngày 09 tháng 04 năm 2021.