Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 lớp 12 môn Toán năm 2023 2024 trường THPT Thiệu Hóa Thanh Hóa

Nội dung Đề khảo sát lần 1 lớp 12 môn Toán năm 2023 2024 trường THPT Thiệu Hóa Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng (KSCL) lần 1 môn Toán lớp 12 năm học 2023 – 2024 trường THPT Thiệu Hóa, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, có đáp án mã đề Mã 121 Mã 122 Mã 123 Mã 124 Mã 125 Mã 126. Trích dẫn Đề khảo sát lần 1 Toán lớp 12 năm 2023 – 2024 trường THPT Thiệu Hóa – Thanh Hóa : + Cho tứ diện OABC có OA OB OC và OA OB OC đôi một vuông góc. Gọi MNP lần lượt là trung điểm của AB BC và CA biết rằng thể tích của khối tứ diện OMNP bằng 9, diện tích của mặt cầu đi qua 4 điểm OABC bằng? + Một chất điểm A xuất phát từ O chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật 1 11 2 180 18 vt m s trong đó t là khoảng thời gian tính từ lúc A bắt đầu chuyển động. Từ trạng thái nghỉ, một chất điểm B cũng xuất phát từ O, chuyển động thẳng cùng hướng với A nhưng chậm hơn 5 giây so với A và có gia tốc bằng 2 am s (a là hằng số). Sau khi B xuất phát được 10 giây thì đuổi kịp A. Vận tốc của B tại thời điểm đuổi kịp A bằng? + Cho hai hình vuông ABCD và ABEF cạnh a lần lượt thuộc hai mặt phẳng vuông góc với nhau. Gọi G là điểm sao cho tam giác GEF vuông cân tại G, hai mặt phẳng (ABCD) và (GEF) song song, G và C nằm cùng phía so với mặt phẳng (ABEF). Thể tích của khối đa diện ABCDGEF bằng? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi Toán THPT cấp tỉnh năm 2021 - 2022 sở GDĐT Yên Bái
Đề thi chọn học sinh giỏi Toán THPT cấp tỉnh năm 2021 – 2022 sở GD&ĐT Yên Bái gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 180 phút; kỳ thi được diễn ra vào ngày 28 tháng 09 năm 2021. Trích dẫn đề thi chọn học sinh giỏi Toán THPT cấp tỉnh năm 2021 – 2022 sở GD&ĐT Yên Bái : + Một nhóm học sinh gồm 10 em trong đó có 2 học sinh lớp 11A1, 3 học sinh lớp 12A2 và 5 học sinh lớp 12A1. Xếp ngẫu nhiên 10 học sinh đó thành một hàng ngang. Tính xác suất để không có 2 học sinh cùng lớp đứng cạnh nhau. + Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, SA = 2a, BD = 3.AC, mặt bên SAB là tam giác cân tại A, hình chiếu vuông góc của đỉnh S trên mặt phẳng đáy trùng với trung điểm H của đoạn AO. 1) Tính thể tích của khối chóp S.ABCD. 2) Tính khoảng cách giữa hai đường thẳng SB và CD. + Cho tam giác ABC (AB < AC) nội tiếp đường tròn (O), M là trung điểm của cạnh BC. Đường phân giác trong của BAC cắt cạnh BC tại D và cắt đường tròn (O) tại điểm P (P khác A). Gọi E là điểm đối xứng với D qua M; trên đường thẳng AO và đường thẳng AD lần lượt lấy các điểm H, F sao cho các đường thẳng HD, FE cùng vuông góc với đường thẳng BC. 1) Gọi K là giao điểm của PE và DH. Chứng minh rằng BHCK là tứ giác nội tiếp và bốn điểm B, H, C, F cùng nằm trên một đường tròn. 2) Gọi (w) là đường tròn qua bốn điểm B, H, C, F và T là giao điểm khác F của AD và (w). Biết đường tròn ngoại tiếp tam giác MTP cắt đường thẳng TH tại điểm thứ hai Q (Q khác T). Chứng minh rằng đường thẳng QA tiếp xúc với đường tròn (O).
Đề thi HSG Toán 12 cấp trường năm 2021 - 2022 trường chuyên Nguyễn Trãi - Hải Dương
Đề thi HSG Toán 12 cấp trường năm 2021 – 2022 trường chuyên Nguyễn Trãi – Hải Dương có lời giải chi tiết. Trích dẫn đề thi HSG Toán 12 cấp trường năm 2021 – 2022 trường chuyên Nguyễn Trãi – Hải Dương : + Cho tam giác nhọn ABC với AB BC. Cho I là tâm nội tiếp của tam giác ABC và là đường tròn ngoại tiếp tam giác ABC. Đường tròn nội tiếp tam giác ABC tiếp xúc với BC tại K. Đường thẳng AK cắt tại điểm thứ hai T. Cho M là trung điểm của BC và N là điểm chính giữa cung BC chứa A của. Đoạn thẳng NT cắt đường tròn ngoại tiếp tam giác BIC ở P. Chứng minh rằng a) Cho KI cắt BIC tại điểm thứ hai X thì N T X thẳng hàng. b) PM // AK. + Cho dãy số x a x n n n a là nghiệm dương của phương trình 2 x kx với số nguyên dương k cho trước. Khi đó chứng minh rằng 1 1 1 (mod ) n n. + Có bao nhiêu cách lát kín bảng 2 2022 bởi các viên domino 1 2 và 2 1?
Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2021 - 2022 sở GDĐT Ninh Bình
giới thiệu đến quý thầy cô giáo và các em học sinh đề thi học sinh giỏi Toán THPT cấp tỉnh năm học 2021 – 2022 sở GD&ĐT Ninh Bình; kỳ thi được diễn ra trong hai ngày 16 và 17 tháng 09 năm 2021.
Đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 - 2021 sở GDĐT Đồng Tháp
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; đề thi được biên soạn theo hình thức đề thi 100% trắc nghiệm, đề thi có đáp án và tóm tắt lời giải (lưu ý: đây là mã đề GỐC nên toàn bộ đáp án đều là A). Trích dẫn đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Đồng Tháp : + Từ một tấm tôn hình quạt OAB có 2 120 o OA AOB người ta xác định hai điểm M N lần lượt là trung điểm của OA OB rồi cắt tấm tôn theo hình chữ nhật MNPQ (như hình vẽ). Dùng hình chữ nhật đó tạo thành mặt xung quanh của một hình trụ với đường sinh MQ NP trùng khít nhau. Khối trụ tương ứng được tạo thành có thể tích là? + Trong không gian với hệ tọa độ Oxyz, cho a(1;-1;0) và hai điểm A(−4;7;3), B(4;4;5). Hai điểm M N thay đổi thuộc mặt phẳng Oxy sao cho MN cùng hướng a và MN = 5√2. Giá trị lớn nhất của |AM – BN| bằng? + Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;1;2), B(-1;0;4), C(0;-1;3) và điểm M thuộc mặt cầu (S): x2 + y2 + (z – 1)2 = 1. Nếu biểu thức MA2 + MB2 + MC2 đạt giá trị nhỏ nhất thì độ đài đoạn AM bằng?