Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra Toán 12 năm 2018 - 2019 trường THCS và THPT Nguyễn Khuyến - Bình Dương lần 4

Đề kiểm tra Toán 12 năm 2018 – 2019 trường THCS và THPT Nguyễn Khuyến – Bình Dương lần 4 được chia sẻ bởi giáo viên nhà trường gồm 6 trang với 50 câu hỏi trắc nghiệm khách quan, đề nhằm kiểm tra kiến thức Toán 12 định kỳ giúp học sinh rèn luyện từng bước để chuẩn bị cho kỳ thi THPT Quốc gia 2019 môn Toán, đề thi có đáp án. Trích dẫn đề kiểm tra Toán 12 năm 2018 – 2019 trường THCS và THPT Nguyễn Khuyến – Bình Dương lần 4 : + Có một cái bể hình trụ cao 10 dm với bán kính đáy 4 dm chứa đầy nước bị một thùng gỗ hình lập phương đóng kín rơi vào làm cho một lượng nước V tràn ra. Biết rằng cạnh thùng gỗ là 8 dm và khi nó rơi vào miệng bể, một đường chéo dài nhất của nó vuông góc với mặt bể, ba cạnh của thùng chạm vào thành của bể như hình vẽ. Tính V. [ads] + Cho phương trình: 3^x = m + 1. Chọn phát biểu đúng. A. Phương trình luôn có nghiệm với mọi m. B. Phương trình có nghiệm với m ≥ −1. C. Phương trình có nghiệm dương nếu m > 0. D. Phương trình luôn có nghiệm duy nhất x = log_3 (m + 1). + Cho hai hàm số y = f(x) = log_a x và y = g(x) = a^x. Xét các mệnh đề sau: I. Đồ thị của hai hàm số f(x) và g(x) luôn cắt nhau tại một điểm. II. Hàm số f(x) + g(x) đồng biến khi a > 1, nghịch biến khi 0 < a < 1. II. Đồ thị hàm số f(x) nhận trục Oy làm tiệm cận. Số mệnh đề đúng là?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL lớp 12 môn Toán thi TN THPT 2024 lần 1 trường THPT Ba Đình Thanh Hóa
Nội dung Đề KSCL lớp 12 môn Toán thi TN THPT 2024 lần 1 trường THPT Ba Đình Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 ôn thi tốt nghiệp Trung học Phổ thông năm học 2023 – 2024 lần 1 trường THPT Ba Đình, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề KSCL Toán lớp 12 thi TN THPT 2024 lần 1 trường THPT Ba Đình – Thanh Hóa : + Cho hình vuông ABCD cạnh a. Trên đường thẳng vuông góc với (ABCD) tại A lấy điểm S di động không trùng với A. Hình chiếu vuông góc của A lên SB SD lần lượt tại H K. Tìm giá trị lớn nhất của thể tích khối tứ diện ACHK. + Với hai số thực a b bất kì, ta kí hiệu 2 3 a b f x xa xb x. Biết rằng luôn tồn tại duy nhất số thực 0 x để 0 min a b a b x R f xf với mọi số thực a b thỏa mãn b a a b và 0 a b. Số 0 x bằng? + Cho hình lập phương có cạnh bằng a và một hình trụ có hai đáy là hai hình tròn nội tiếp hai mặt đối diện của hình lập phương. Gọi 1 S là diện tích 6 mặt của hình lập phương 2 S là diện tích xung quanh của hình trụ. Hãy tính tỉ số 2 1 S S. File WORD (dành cho quý thầy, cô):