Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề lũy thừa, mũ và lôgarit ôn thi THPT 2021 - Nguyễn Bảo Vương

Tài liệu gồm 583 trang, được biên soạn bởi thầy giáo Nguyễn Bảo Vương, phân dạng và tuyển chọn các bài tập trắc nghiệm (có đáp án và lời giải chi tiết) chuyên đề hàm số lũy thừa, hàm số mũ và hàm số lôgarit, giúp học sinh rèn luyện khi học chương trình Giải tích 12 chương 2 và ôn thi tốt nghiệp THPT môn Toán năm học 2020 – 2021. CHUYÊN ĐỀ 1 . LŨY THỪA VÀ HÀM SỐ LŨY THỪA. DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (mức độ 5 – 6 điểm). + Dạng toán 1. Rút gọn, biến đổi, tính toán biểu thức lũy thừa. + Dạng toán 2. So sánh các biểu thức chứa lũy thừa. + Dạng toán 3. Tìm tập xác định của hàm số lũy thừa. + Dạng toán 4. Đạo hàm hàm số lũy thừa. + Dạng toán 5. Khảo sát hàm số lũy thừa. CHUYÊN ĐỀ 2 . CÔNG THỨC, BIẾN ĐỔI LOGARIT. DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (mức độ 5 – 6 điểm). + Dạng toán 1. Câu hỏi lý thuyết. + Dạng toán 2. Tính toán, rút gọn biểu thức chứa logarit. DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (mức độ 7 – 8 điểm). + Dạng toán 3. Biểu diễn biểu thức logarit này theo logarit khác. DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (mức độ 9 – 10 điểm). + Dạng toán 4. Một số bài toán nâng cao. CHUYÊN ĐỀ 3 . HÀM SỐ MŨ – HÀM SỐ LOGARIT. DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (mức độ 5 – 6 điểm). + Dạng toán 1. Tìm tập xác định hàm số mũ, hàm số logarit. + Dạng toán 2. Tìm đạo hàm hàm số mũ, hàm số logarit. + Dạng toán 3. Khảo sát hàm số mũ, hàm số logarit. DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (mức độ 7 – 8 điểm). + Dạng toán 4. Tìm tập xác định hàm số mũ, hàm số logarit. + Dạng toán 5. Tính đạo hàm hàm số mũ, hàm số logarit. + Dạng toán 6. Khảo sát hàm số mũ, hàm số logarit. + Dạng toán 7. Bài toán thực tế. DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (mức độ 9 – 10 điểm). + Dạng toán 8. Tính toán liên quan đến logarit dùng đẳng thức. + Dạng toán 9. Bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất mũ – loagrit (sử dụng phương pháp bất đẳng thức – biến đổi). + Dạng toán 10. Sử dụng phương pháp hàm số (hàm đặc trưng) giải các bài toán logarit. CHUYÊN ĐỀ 4 . PHƯƠNG TRÌNH MŨ – LOGARIT. DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (mức độ 5 – 6 điểm). + Dạng toán 1. Phương trình logarit. + + Dạng toán 1.1 Phương trình cơ bản. + + Dạng toán 1.2 Biến đổi đưa về phương trình cơ bản. + Dạng toán 2. Phương trình mũ. + + Dạng toán 2.1 Phương trình cơ bản. + + Dạng toán 2.2 Biến đổi đưa về phương trình cơ bản. DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (mức độ 7 – 8 điểm). + Dạng toán 3. Phương pháp giải phương trình logarit. + + Dạng toán 3.1 Phương pháp đưa về cùng cơ số. + + Dạng toán 3.2 Phương pháp đặt ẩn phụ. + + Dạng toán 3.3 Phương pháp mũ hóa. + + Dạng toán 3.4 Phương pháp hàm số, đánh giá. + Dạng toán 4. Phương pháp giải phương trình mũ. + + Dạng toán 4.1 Phương pháp đưa về cùng cơ số. + + Dạng toán 4.2 Phương pháp đặt ẩn phụ. + + Dạng toán 4.3 Phương pháp logarit hóa. + + Dạng toán 4.4 Phương pháp hàm số, đánh giá. + Dạng toán 5. Phương trình tổ hợp của mũ và logarit. DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (mức độ 9 – 10 điểm). + Dạng toán 6. Phương trình logarit chứa tham số. + Dạng toán 7. Phương trình mũ chứa tham số. + Dạng toán 8. Phương trình kết hợp của mũ và logarit chứa tham số. + Dạng toán 9. Phương trình mũ – logarit chứa nhiều ẩn. CHUYÊN ĐỀ 5 . BẤT PHƯƠNG TRÌNH MŨ – LOGARIT. DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (mức độ 5 – 6 điểm). + Dạng toán 1. Bất phương trình logarit. + Dạng toán 2. Bất phương trình mũ. DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (mức độ 7 – 8 điểm). + Dạng toán 3. Bất phương trình logarit. + Dạng toán 4. Bất phương trình mũ. DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (mức độ 9 – 10 điểm). + Dạng toán 5. Bất phương trình logarit chứa tham số. + Dạng toán 6. Bất phương trình mũ chứa tham số. + Dạng toán 7. Bất phương trình nhiều ẩn.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình mũ
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình mũ, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 2: hàm số luỹ thừa, hàm số mũ và hàm số lôgarit. Bên cạnh tài liệu phương trình và bất phương trình mũ dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình mũ: A. KIẾN THỨC CƠ BẢN 1. Phương trình mũ cơ bản ${a^x} = b$ ($a > 0$, $a \ne 1$). + Phương trình có một nghiệm duy nhất khi $b > 0.$ + Phương trình vô nghiệm khi $b \le 0.$ 2. Giải phương trình mũ bằng phương pháp biến đổi, quy về cùng cơ số. 3. Giải phương trình mũ bằng phương pháp đặt ẩn phụ. 4. Giải phương trình mũ bằng phương pháp logarit hóa. 5. Giải phương trình mũ bằng phương pháp đồ thị. 6. Giải phương trình mũ bằng phương pháp sử dụng tính đơn điệu của hàm số. 7. Giải phương trình mũ bằng phương pháp đánh giá. 8. Giải bất phương trình mũ: Ta cũng thường sử dụng các phương pháp giải tương tự như đối với phương trình mũ. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình logarit
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình logarit, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 2: hàm số luỹ thừa, hàm số mũ và hàm số lôgarit. Bên cạnh tài liệu phương trình và bất phương trình logarit dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình logarit: A. KIẾN THỨC CƠ BẢN 1. Định nghĩa. + Phương trình lôgarit là phương trình có chứa ẩn số trong biểu thức dưới dấu lôgarit. + Bất phương trình lôgarit là bất phương trình có chứa ẩn số trong biểu thức dưới dấu lôgarit. 2. Phương trình vàbất phương trình lôgarit cơ bản. + Phương trình lôgarit cơ bản có dạng ${\log _a}f(x) = b.$ + Bất phương trình lôgarit cơ bản có dạng: ${\log _a}f(x) > b$; ${\log _a}f(x) \ge b$; ${\log _a}f(x) < b$; ${\log _a}f(x) \le b.$ 3. Phương pháp giải phương trình và bất phương trình lôgarit: Đưa về cùng cơ số, Đặt ẩn phụ, Mũ hóa. B. KỸ NĂNG CƠ BẢN 1. Điều kiện xác định của phương trình lôgarit. 2. Kiểm tra xem giá trị nào là nghiệm của phương trình lôgarit. 3. Tìm tập nghiệm của phương trình lôgarit. 4. Tìm số nghiệm của phương trình lôgarit. 5. Tìm nghiệm lớn nhất, hay nhỏ nhất của phương trình lôgarit. 6. Tìm mối quan hệ giữa các nghiệm của phương trình lôgarit: tổng, hiệu, tích, thương …. 7. Cho một phương trình lôgarit, nếu đặt ẩn phụ thì thu được phương trình nào (ẩn t). 8. Tìm điều kiện của tham số $m$ để phương trình lôgarit thỏa điều kiện về số nghiệm: có nghiệm, vô nghiệm, nghiệm thỏa điều kiện nào đó …. 9. Điều kiện xác định của bất phương trình lôgarit. 10. Tìm tập nghiệm của bất phương trình lôgarit. 11. Tìm nghiệm nguyên (tự nhiên) lớn nhất, nguyên (tự nhiên) nhỏ nhất của bất phương trình lôgarit. 12. Tìm điều kiện của tham số $m$ để bất phương trình lôgarit thỏa điều kiện về số nghiệm: có nghiệm, vô nghiệm, nghiệm thỏa điều kiện nào đó …. C. BÀI TẬP TRẮC NGHIỆM D. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm lũy thừa và hàm số lũy thừa
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm lũy thừa và hàm số lũy thừa, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 2: hàm số luỹ thừa, hàm số mũ và hàm số lôgarit. Bên cạnh tài liệu lũy thừa và hàm số lũy thừa dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm lũy thừa và hàm số lũy thừa: A. LÝ THUYẾT SÁCH GIÁO KHOA I. LŨY THỪA 1. Lũy thừa số mũ nguyên dương. 2. Lũy thừa số mũ 0 – Lũy thừa số mũ nguyên âm. 3. Lũy thừa số mũ hữu tỷ. 4. Lũy thừa số thực. 5. Tính chất của lũy thừa số mũ nguyên. 6. Công thức lãi kép. II. HÀM SỐ LŨY THỪA 1. Định nghĩa hàm số lũy thừa. 2. Tập xác định hàm số lũy thừa. 3. Đạo hàm hàm số lũy thừa. 4. Tính chất của hàm số lũy thừa. B. BÀI TẬP TRẮC NGHIỆM C. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm logarit
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm logarit, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 2: hàm số luỹ thừa, hàm số mũ và hàm số lôgarit. Bên cạnh tài liệu logarit dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm logarit: A. KIẾN THỨC CƠ BẢN 1. Định nghĩa phép toán logarit. 2. Các tính chất của logarit. 3. Lôgarit của một tích. 4. Lôgarit của một thương. 5. Lôgarit của lũy thừa. 6. Công thức đổi cơ số logarit. B. KỸ NĂNG CƠ BẢN 1. Tính giá trị biểu thức logarit. 2. Rút gọn biểu thức logarit. 3. So sánh hai biểu thức logarit. 4. Biểu diễn giá trị logarit qua một hay nhiều giá trị logarit khác. C. KỸ NĂNG SỬ DỤNG MÁY TÍNH 1. Tính giá trị của một biểu thức chứa logarit. 2. Tính giá trị của biểu thức logarit theo các biểu thức logarit đã cho. 3. Tìm các khẳng định đúng trong các biểu thức logarit đã cho. 4. So sánh lôgarit với một số hoặc lôgarit với nhau. D. BÀI TẬP TRẮC NGHIỆM E. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM