Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển HSG Toán 12 năm 2020 - 2021 sở GDĐT Phú Thọ (Ngày 1)

Thứ Năm ngày 24 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Phú Thọ tổ chức kỳ thi chọn đội tuyển dự thi học sinh giỏi Quốc gia lớp 12 THPT môn Toán năm học 2020 – 2021 ngày thi thứ nhất. Đề chọn đội tuyển HSG Toán 12 năm 2020 – 2021 sở GD&ĐT Phú Thọ (Ngày 1) gồm có 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian giám thị coi thi phát đề). Trích dẫn đề chọn đội tuyển HSG Toán 12 năm 2020 – 2021 sở GD&ĐT Phú Thọ (Ngày 1) : + Giả sử O, I lần lượt là tâm đường tròn ngoại tiếp, nội tiếp tam giác ABC với bán kính R, r tương ứng. Gọi P là điểm chính giữa cung BAC, QP là đường kính của (O), D là giao điểm của PI và BC, F là giao điểm của đường tròn ngoại tiếp tam giác AID với đường thẳng PA. Lấy E trên tia DP sao cho DE = DQ. a) Chứng minh rằng góc IDF = 90 độ. b) Giả sử AEF = APE, chứng minh rằng sin2 BAC = 2r/R. + Cho dãy số thực dương (an) (n >=1) thỏa mãn điều kiện: a1 + a2 + … + an + an+1 + an+2 < 4an+1. Chứng minh rằng a1 + a2 + … + an =< an+1 với mọi n thuộc N*. + Trên mặt phẳng tọa độ Oxy, cho S là tập hợp các điểm (x;y) thỏa mãn đồng thời hai điều kiện: i) x và y thuộc N. ii) 0 ≤ y ≤ x ≤ 2020. a) Tính số phần tử của S. b) Hỏi có bao nhiêu tập con A gồm 2020 phần tử của S sao cho A không chứa hai điểm (x1;y1) và (x2;y2) thỏa mãn: (x1 – x2)(y1 – y2) = 0?

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG tỉnh Toán 12 THPT năm 2017 - 2018 sở GD và ĐT Hà Tĩnh
Đề thi chọn HSG tỉnh Toán 12 THPT năm 2017 – 2018 sở GD và ĐT Hà Tĩnh gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 180 phút, đề nhằm tuyển chọn các em học sinh giỏi môn Toán lớp 12 tại các trường THPT và cở sở GD – ĐT trên toàn tỉnh Hà Tĩnh, đề thi HSG Toán 12 có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán 12 : + Một công ty sữa muốn thiết kế hộp đựng sữa với thể tích hộp là 1dm3, hộp được thiết kế bởi một trong hai mẫu sau với cùng một loại vật liệu: mẫu 1 là hình hộp chữ nhật; mẫu 2 là hình trụ. Biết rằng chi phí làm mặt hình tròn cao hơn 1,2 lần chi phí làm mặt hình chữ nhật với cùng diện tích. Hỏi thiết kế hộp theo mẫu nào sẽ tiết kiệm chi phí hơn? (xem diện tích các phần nối giữa các mặt là không đáng kể). + Cho hàm sốy = (2x + 3)/(x + 2) có đồ thị (C) và đường thẳng d: y = -2x + m. Chứng minh rằng d cắt (C) tại hai điểm A, B phân biệt với mọi số thực m. Gọi k1, k2 lần lượt là hệ số góc của tiếp tuyến của (C) tại A và B. Tìm m để k1 + k2 = 4. [ads] + Cho hình chóp S.ABCD có đáy là hình thoi, AB = AC = a; tam giác SBD đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi M là trung điểm của cạnh SC, mặt phẳng (ABM) chia khối chóp S.ABCD thành hai khối đa diện. a. Tính thể tích của khối đa diện không chứa điểm S. b. Tính khoảng cách giữa hai đường thẳng SA và BM.
Đề thi HSG Toán 12 năm học 2017 - 2018 sở GD và ĐT Quảng Ninh (Bảng A)
Đề thi HSG Toán 12 năm học 2017 – 2018 sở GD và ĐT Quảng Ninh (Bảng A) gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi học sinh giỏi Toán 12 có lời giải chi tiết .
Đề thi chọn học sinh giỏi Toán 12 năm học 2017 - 2018 sở GD và ĐT Nam Định
Đề thi chọn học sinh giỏi Toán 12 năm học 2017 – 2018 sở GD và ĐT Nam Định gồm 2 phần: 40 câu hỏi trắc nghiệm khách quan, thời gian làm bài 60 phút, 5 bài toán tự luận, thời gian làm bài 75 phút, đề thi nhằm chọn lọc các em HSG môn Toán 12 THPT tại các trường THPT trên toàn tỉnh Nam Định. Trích dẫn đề thi chọn học sinh giỏi Toán 12 năm học 2017 – 2018 : + Trong không gian với hệ tọa độ Oxyz, cho A(a,0,0), B(0,b,0), C(0,0,c) với a, b, c là các số thực thay đổi, khác 0 và thỏa mãn a + b + c = 6. Gọi tâm mặt cầu ngoại tiếp tứ diện OABC là I. Giá trị nhỏ nhất của OI bằng? [ads] + Cho X là tập hợp các số tự nhiên có 4 chữ số khác nhau được lập từ các số 1, 2, 3, 4, 5, 6. Lấy ngẫu nhiên một số thuộc X. Xác suất để lấy được một số chia hết cho 45 là? +  Có bao nhiêu giá trị m nguyên dương nhỏ hơn 10 để đồ thị hàm số y = x^3 – mx + m – 1 có hai điểm cực trj nằm về 2 phía của trục Ox?
Đề thi chọn HSG THPT năm học 2017 - 2018 môn Toán 12 sở GD và ĐT Hà Nam
Đề thi chọn HSG THPT năm học 2017 – 2018 môn Toán 12 sở GD và ĐT Hà Nam gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi HSG Toán 12 có lời giải chi tiết . Trích dẫn đề thi chọn HSG THPT năm học 2017 – 2018 môn Toán 12 : + Cho hàm số y = -x^3 + 3mx^2 + 3(1 – m^2)x + m^3 – m^2, với m là tham số thực. Chứng minh rằng ∀m ∈ R hàm số trên luôn có hai điểm cực trị. Tìm tọa độ điểm M thuộc đồ thị hàm số trên thỏa mãn điều kiện điểm M vừa là điểm cực đại của đồ thị hàm số ứng với giá trị này của m đồng thời điểm M vừa là điểm cực tiểu của đồ thị ứng với giá trị khác của m. [ads] + Cho mặt cầu có tâm O và bán kính R. Từ một điểm S bất kỳ trên mặt cầu ta dựng ba cát tuyến bằng nhau, cắt mặt cầu tại các điểm A, B, C ( khác với S) và góc ASB = góc BSC = góc CSA = α. Tính thể tích khối chóp S.ABC theo R và α. Khi α thay đổi, tìm α để thể tích khối chóp S.ABC lớn nhất. + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. Biết AB = SD = 3a, AD = SB = 4a, đường chéo AC vuông góc với mặt phẳng (SBD). Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng BD và SA.