Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 - 2024 sở GDĐT Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Phú Thọ; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 – 2024 sở GD&ĐT Phú Thọ : + Cho nửa đường tròn (O) đường kính BC R 2. Điểm A di động trên nửa đường tròn (O). Gọi H là hình chiếu của điểm A lên BC. Gọi D và E lần lượt là hình chiếu của H lên AC và AB. Giá trị lớn nhất của diện tích tứ giác AEHD bằng? + Một nhóm bạn đi câu cá. Bạn câu được ít nhất câu được 1 7 tổng số cá mà cả nhóm câu được, bạn câu được nhiều nhất câu được 1 5 tổng số cá mà cả nhóm câu được. Biết rằng số cá câu được của mỗi bạn là khác nhau. Số người của nhóm đi câu cá là? + Cho tam giác ABC nhọn (AB AC), có trực tâm H và nội tiếp trong đường tròn (O). Gọi DEF tương ứng là chân các đường cao của tam giác ABC kẻ từ ABC. Tia AO cắt BC tại M, gọi P Q tương ứng là hình chiếu của M trên các cạnh AC AB. a) Chứng minh tam giác HFE đồng dạng với tam giác MPQ. b) Chứng minh 2 AB DB MB AC DC MC. c) Khi điểm A di động trên (O), dây cung BC cố định sao cho tam giác ABC nhọn. Đường thẳng chứa tia phân giác ngoài của góc BHC cắt AB AC lần lượt tại hai điểm R N. Đường tròn ngoại tiếp tam giác ARN cắt đường phân giác trong của BAC tại điểm thứ hai là K. Chứng minh rằng đường thẳng HK luôn đi qua một điểm cố định.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán THCS năm 2023 - 2024 sở GDĐT Cần Thơ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Cần Thơ; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2024; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề thi chọn học sinh giỏi Toán THCS năm 2023 – 2024 sở GD&ĐT Cần Thơ : + Phòng Giáo dục và Đào tạo huyện A chọn một nhóm học sinh cấp Tiểu học và học sinh cấp Trung học cơ sở để tham gia Kỳ thi Violympic cấp tỉnh. Ban đầu, Phòng giáo dục và Đào tạo huyện A dự kiến chọn 60% học sinh Tiểu học trong nhóm học sinh dự thi. Do đơn vị tổ chức không đủ máy vi tính nên Phòng giáo dục và Đào tạo huyện A phải giảm số học sinh dự thi của mỗi cấp là 30. Vì vậy số học sinh Tiểu học được chọn chiếm 62% trong nhóm học sinh dự thi. Hỏi trong nhóm học sinh dự thi theo thực tế có bao nhiêu học sinh của mỗi cấp học? + Anh Bình cần rút tiền trong thẻ ATM để chi tiêu cá nhân nhưng lại quên mật khẩu đăng nhập tài khoản. Biết rằng mật khẩu là một số chính phương A có bốn chữ số nếu bớt đi mỗi chữ số của số A một đơn vị thì được số mới là số chính phương có bốn chữ số. Em hãy giúp anh Bình tìm lại mật khẩu đã quên. + Cho hai đường tròn O R và O R với R cắt nhau tại hai điểm A và B Trên tia đối của tia AB lấy điểm C. Qua điểm C kẻ cách tiếp tuyến CD CE với đường tròn O trong đó D, E là các tiếp điểm và E nằm trong đường tròn O. Các đường thẳng AD, AE cắt đường tròn O lần lượt tại M và N (M và N khác A). Tia DE cắt đoạn thẳng MN tại I. Chứng minh: a) Các điểm B N I E cùng nằm trên một đường tròn b) AE MB AB MI. c) Đường thẳng O I’ vuông góc với đường thẳng MN.