Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra lớp 9 môn Toán đầu năm 2023 2024 phòng GD ĐT Kim Sơn Ninh Bình

Nội dung Đề kiểm tra lớp 9 môn Toán đầu năm 2023 2024 phòng GD ĐT Kim Sơn Ninh Bình Bản PDF - Nội dung bài viết Đề kiểm tra Toán lớp 9 đầu năm 2023 - 2024 phòng GD&ĐT Kim Sơn - Ninh Bình Đề kiểm tra Toán lớp 9 đầu năm 2023 - 2024 phòng GD&ĐT Kim Sơn - Ninh Bình Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề kiểm tra đánh giá chất lượng môn Toán lớp 9 đầu năm học 2023-2024 do phòng Giáo dục và Đào tạo huyện Kim Sơn, tỉnh Ninh Bình đã chuẩn bị. Đề thi bao gồm 12 câu trắc nghiệm (tổng cộng 03 điểm) và 03 câu tự luận (tổng cộng 07 điểm), thời gian làm bài là 60 phút. Để giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới, đề thi sẽ đi kèm đáp án và hướng dẫn chấm điểm chi tiết. Trích dẫn một số câu hỏi trong đề thi như sau: - Giải bài toán bằng cách lập phương trình: Một người đi xe máy từ A đến B với vận tốc 40 km/h. Lúc về, người đó đi với vận tốc 30 km/h, nên thời gian về nhiều hơn thời gian đi là 45 phút. Yêu cầu tính quãng đường AB. - Cho hình chữ nhật ABCD có AB = 4cm, AD = 3cm. Hãy vẽ đường cao AH của tam giác ADB và thực hiện các yêu cầu: + Tính diện tích hình chữ nhật ABCD, tính độ dài đường chéo BD + Chứng minh rằng tam giác AHB đồng dạng với tam giác BCD + Chứng minh rằng AD^2 = DH.DB và tính độ dài đoạn DH. - Giả sử hằng ngày bạn Tiến dành x giờ để tập chạy với vận tốc trung bình là 10km/h. Biểu thức nào sau đây biểu thị quãng đường Tiến chạy được trong x giờ? Chúc các em học sinh đạt kết quả tốt trong bài kiểm tra và tiếp tục phấn đấu học tập. Hãy ôn tập và giữ vững kiến thức để vượt qua mọi thử thách trước mắt. Cảm ơn các thầy cô đã hỗ trợ và động viên các em trong quá trình học tập!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 9 vòng 1 năm 2019 - 2020 phòng GDĐT Quỳ Hợp - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi HSG Toán 9 vòng 1 năm học 2019 – 2020 phòng GD&ĐT Quỳ Hợp – Nghệ An, đề thi gồm có 05 bài toán tự luận, thời gian làm bài 150 phút, học sinh bảng B không làm câu số 5, học sinh không được sử dụng máy tính khi làm bài. Trích dẫn đề thi HSG Toán 9 vòng 1 năm 2019 – 2020 phòng GD&ĐT Quỳ Hợp – Nghệ An : + Cho nửa đường tròn tâm O đường kính AB, kẻ dây CD bất kỳ không trùng với AB. Gọi H, K theo thứ tự là chân các đường vuông góc kẻ từ A và B đến đường thẳng CD. a/ Chứng minh: CH = DK. b/ Chứng minh: S_ABCD = S_ACB + S_ADB. c/ Tìm vị trí dây CD để diện tích tứ giác AHKB lớn nhất, tính diện tích lớn nhất đó biết AB = 30 cm, CD = 18 cm. [ads] + Trong hình vuông đơn vị (cạnh bằng 1) có 101 điểm. Chứng minh rằng có 5 điểm đã chọn được phủ bởi hình tròn bán kính 1/7. + Cho biểu thức P. a) Nêu điều kiện xác định rồi rút gọn biểu thức P. b) Tìm tất cả các giá trị nguyên của a để biểu thức P nhận giá trị nguyên. + Tìm các số nguyên tố p sao cho 7p + 1 bằng lập phương của một số tự nhiên. + Tìm số tự nhiên n sao cho số sau là số chính phương: n^2 + n + 2020.
Đề thi chọn HSG Toán 9 vòng 1 năm 2019 - 2020 phòng GDĐT Thường Tín - Hà Nội
Ngày … tháng 10 năm 2019, phòng Giáo dục và Đào tạo UBND huyện Thường Tín, thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi lớp 9 vòng 1 môn Toán năm học 2019 – 2020. Đề thi chọn HSG Toán 9 vòng 1 năm học 2019 – 2020 phòng GD&ĐT Thường Tín – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi chọn HSG Toán 9 vòng 1 năm 2019 – 2020 phòng GD&ĐT Thường Tín – Hà Nội : + Cho hai đường tròn (O;R) và đường tròn (O’;R/2) tiếp xúc ngoài nhau tại A. Trên đường tròn (O) lấy điểm B sao cho AB = R và điểm M trên cung lớn AB. Tia MA cắt đường tròn (O’) tại điểm thứ hai là N. Qua N kẻ đường thẳng song song với AB cắt đường thẳng MB ở Q và cắt đường tròn (O’) ở P. a. Chứng minh: Tam giác OAM đồng dạng với tam giác OAN. b. Tính: NQ theo R. c. Xác định vị trí của M để diện tích tứ giác ABQN đạt giá trị lớn nhất. Tính giá trị lớn nhất theo R. + Cho tam giác ABC và một điểm O nằm trong tam giác đó. Các tia AO, BO, CO cắt các cạnh BC, CA, AB theo thứ tự tại M, N, P. Chứng minh rằng: OA/AM + OB/BN + OC/CP = 2. + Cho hai số dương x, y thỏa mãn điều kiện x^3 + y^3 = x – y. Chứng minh rằng: x + y < 1.
Đề thi học sinh giỏi Toán 9 năm 2019 - 2020 phòng GDĐT Đống Đa - Hà Nội
Ngày 19 tháng 10 năm 2019, phòng Giáo dục và Đào tạo quận Đống Đa, thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi quận lớp 9 môn Toán năm học 2019 – 2020. Đề thi học sinh giỏi Toán 9 năm học 2019 – 2020 phòng GD&ĐT Đống Đa – Hà Nội gồm 05 bài toán, thời gian làm bài 120 phút, đề thi có lời giải chi tiết và biểu điểm. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2019 – 2020 phòng GD&ĐT Đống Đa – Hà Nội : + Cho a, b, c là các số thực dương thỏa mãn a > c và b > c. Chứng minh rằng: √c(a – c) + √c(b – c) ≤ √ab. [ads] + Cho hình vuông ABCD. Lấy điểm E thuộc đoạn thẳng BC nhưng không trùng với các điểm B và C. Lấy điểm G sao cho AG vuông góc với AE và điểm H sao cho AH vuông góc với EG, trong đó các điểm G, H thuộc đường thẳng CD. Hai đoạn thẳng EG và AH cắt nhau tại K. 1. Chứng minh rằng tam giác AEG vuông cân. 2. Chứng minh rằng CG.HG = AE^2. 3. Tính số đo của góc CBK. + Cho 1011 số nguyên dương khác nhau không vượt quá 2019. Chứng minh trong các số đã cho có ít nhất hai số mà một số chia hết cho số còn lại.
Đề thi chọn HSG huyện Toán 9 năm 2019 - 2020 phòng GDĐT Quan Sơn - Thanh Hóa
Ngày 09 tháng 10 năm 2019, phòng Giáo dục và Đào tạo huyện Quan Sơn, tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán 9 năm 2019 – 2020. Đề thi chọn HSG huyện Toán 9 năm 2019 – 2020 phòng GD&ĐT Quan Sơn – Thanh Hóa gồm có 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi gồm có 01 trang. [ads] Trích dẫn đề thi chọn HSG huyện Toán 9 năm 2019 – 2020 phòng GD&ĐT Quan Sơn – Thanh Hóa : + Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Chứng minh rằng: 1. AF.AB = AH.AD = AE.AC. 2. H là tâm đường tròn nội tiếp tam giác DEF. 3. Gọi M, N, P, I, K, Q lần lượt là trung điểm các đoạn thẳng BC, AC, AB, EF, ED, DF. Chứng minh rằng các đường thẳng MI, NQ, PK đồng quy. 4. Gọi độ dài các đoạn thẳng AB, BC, CA lần lượt là a, b, c. Độ dài các đoạn thẳng AD, BE, CF là a’, b’, c’. Tìm giá trị nhỏ nhất của biểu thức: (a + b + c)^2/(a’^2 + b’^2 + c’^2). + Cho hai số dương a, b thỏa mãn: a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: A = 1/ab + 1/(a^2 + b^2). + Tìm các số nguyên x để biểu thức x^4 – x^2 + 2x + 2 là số chính phương.