Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề căn bậc hai và căn bậc ba Bùi Đức Phương

Nội dung Chuyên đề căn bậc hai và căn bậc ba Bùi Đức Phương Bản PDF - Nội dung bài viết Chuyên đề căn bậc hai và căn bậc ba Bùi Đức Phương Chuyên đề căn bậc hai và căn bậc ba Bùi Đức Phương Chuyên đề căn bậc hai và căn bậc ba do thầy giáo Bùi Đức Phương biên soạn là tài liệu giáo khoa bao gồm 40 trang, dành cho học sinh lớp 9. Tài liệu tổng hợp kiến thức và hướng dẫn phương pháp giải một số dạng toán quan trọng trong chương trình môn Toán. Bài 1: Căn bậc hai. Dạng 1 là việc tìm căn bậc hai của một số, phương pháp giải đề cập đến định nghĩa và tính chất của căn bậc hai. Dạng 2 là so sánh biểu thức không sử dụng máy tính, phương pháp giải đề cập đến các tính chất của căn bậc hai. Dạng 3 là biểu diễn hình học căn thức sử dụng thước kẻ và pa, phương pháp giải đề cập đến các tính chất về dựng hình, đặc biệt là dựng hình vuông, tam giác vuông để biết độ dài. Bài 2: Căn thức bậc hai. Dạng 4 là tìm điều kiện xác định của căn bậc hai, phương pháp giải bao gồm các trường hợp khi biểu thức có nghĩa hoặc không. Dạng 5 là rút gọn các căn thức đơn giản, phương pháp giải sử dụng các tính chất của căn bậc hai. Bài 3: Liên hệ giữa phép nhân, phép chia & phép khai phương. Dạng 6 là áp dụng phép nhân, phép chia, phép khai phương để tính giá trị biểu thức, phương pháp giải sử dụng các tính chất phép nhân, phép chia, phép khai phương. Bài 4: Biến đổi biểu thức chứa căn thức bậc hai. Dạng 7 và dạng 8 đề cập đến cách biến đổi biểu thức chứa căn bậc hai, phương pháp giải sử dụng các tính chất phép nhân, phép chia, phép khai phương. Bài 5: Căn bậc ba. Dạng 9 là các dạng bài tập liên quan đến căn bậc ba, phương pháp giải áp dụng định nghĩa và các tính chất của căn bậc ba. Cuối cùng là ôn tập chương I để củng cố kiến thức đã học. Chuyên đề căn bậc hai và căn bậc ba Bùi Đức Phương là tài liệu hữu ích giúp học sinh nắm vững kiến thức và phương pháp giải các dạng toán liên quan đến căn bậc hai và căn bậc ba.

Nguồn: sytu.vn

Đọc Sách

Tài liệu Toán 9 chủ đề góc ở tâm và số đo cung
Tài liệu gồm 09 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề góc ở tâm và số đo cung trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Góc ở tâm. 2. Số đo cung. 3. So sánh hai cung. 4. Khi nào thì sđ AC + sđ BC = sđ AB. B. Bài tập. Dạng 1 : Tính số đo của góc ở tâm, của cung bị chắn. Cách giải: – Đưa về cách tính số đo một góc của tam giác, tam giác. – Để tính số đo của cung nhỏ, ta tính số đo của góc ở tâm tương ứng. – Để tính số đo của cung lớn ta lấy 3600 trừ đi số đo của cung nhỏ. – Sử dụng tỉ số lượng giác của một góc nhọn để tính góc. – Sử dụng quan hệ giữa đường kính và dây. Dạng 2 : Chứng minh hai cung bằng nhau. Cách giải: Để chứng minh hai cung (của một đường tròn) bằng nhau ta chứng minh hai cung này có cùng một số đo.
Tài liệu Toán 9 chủ đề góc tạo bởi tia tiếp tuyến và dây cung
Tài liệu gồm 11 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề góc tạo bởi tia tiếp tuyến và dây cung trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Định nghĩa: + Góc BAx có đỉnh nằm trên đường tròn cạnh Ax là một tia tiếp tuyến còn cạnh AB chứa dây cung AB, góc BAx gọi là góc tạo bởi tiếp tuyến và dây cung. + AnB gọi là cung bị chắn. 2. Định lý: Số đo của góc tạo bởi tia tiếp tuyến và dây cung bằng nửa số đo cung bị chắn. 3. Hệ quả: Trong một đường tròn, góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau. 4. Định lý bổ sung (Bổ đề): Nếu góc BAx (với đỉnh A nằm trên đường tròn, một cạnh chứa dây cung AB) có số đo bằng nửa số đo của cung AB căng dây đó và cung này nằm bên trong gó đó thì cạnh Ax là một tia tiếp tuyến của đường tròn. B. Bài tập. Dạng 1 : Chứng minh đẳng thức, các góc bằng nhau. Cách giải: Ta áp dụng các kiến thức sau: – Góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau. – Hai góc kề đáy của tam giác cân thì bằng nhau. – Hai tam giác có hai cặp góc bằng nhau thì cặp góc còn lại cũng bằng nhau. Dạng 2 : Chứng minh hai đường thẳng song song, hai đường thẳng vuông góc, một tia là tiếp tuyến của đường tròn. Cách giải: Sử dụng hệ quả về góc tạo bởi tia tiếp tuyến và dây cung hoặc hệ quả của hia góc nội tiếp.
Tài liệu Toán 9 chủ đề liên hệ giữa cung và dây
Tài liệu gồm 07 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề liên hệ giữa cung và dây trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Định lí 1. Với hai cung nhỏ trong một đường tròn hay hai đường tròn bằng nhau, ta có: a) Hai cung bằng nhau căng hai dây bằng nhau. b) Hai dây bằng nhau căng hai cung bằng nhau. 2. Định lí 2. Với hai cung nhỏ trong một đường tròn hay hai đường tròn bằng nhau, ta có: a) Cung lớn hơn căng dây lớn hơn. b) Dây lớn hơn căng cung lớn hơn. 3. Bổ sung. a) Trong một đường tròn, hai cung bị chắn giữa hai dây song song thì bằng nhau. b) Trong một đường tròn, đường kính đi qua điểm chính giữa của một cung thì đi qua trung điểm của dây căng cung ấy. Trong một đường tròn, đường kính đi qua trung điểm của một dây (không đi qua tâm) thì đi qua điểm chính giữa của cung bị căng bởi dây ấy. c) Trong một đường tròn, đường kính đi qua điểm chính giữa của một cung thì vuông góc với dây căng cung ấy và ngược lại. B. Bài tập.
Tài liệu Toán 9 chủ đề tứ giác nội tiếp
Tài liệu gồm 19 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề tứ giác nội tiếp trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Định nghĩa: Tứ giác nội tiếp đường tròn là tứ giác có bốn đỉnh nằm trên đường tròn đó. 2. Các tính chất: Cho tứ giác ABCD nội tiếp đường tròn (O), khi đó: – Tổng số đo hai góc đối diện bằng 180 độ. – Nếu một tứ giác có tổng số đo hai góc đối diện bằng 180 độ thì tứ giác đó nội tiếp được đường tròn. 3. Một số dấu hiệu nhận biết tứ giác nội tiếp. – Tứ giác có tổng hai góc đối bằng 180 độ. – Tứ giác có góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện. – Tứ giác có bốn đỉnh cách đều một điểm cố định (mà ta có thể xác định được). Điểm đó là tâm của đường tròn ngoại tiếp tứ giác. – Tứ giác có hai đỉnh kề cùng nhìn cạnh chứa hai đỉnh còn lại dưới một góc α (dựa vào kiến thức cung chứa góc). B. Bài tập.