Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán lần 3 năm 2022 2023 phòng GD ĐT Mê Linh Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán lần 3 năm 2022 2023 phòng GD ĐT Mê Linh Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát Toán lớp 9 lần 3 năm 2022 - 2023 phòng GD&ĐT Mê Linh - Hà Nội Đề khảo sát Toán lớp 9 lần 3 năm 2022 - 2023 phòng GD&ĐT Mê Linh - Hà Nội Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 bộ đề thi khảo sát chất lượng môn Toán lần 3 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Mê Linh, thành phố Hà Nội. Đề thi bao gồm câu hỏi đa dạng, được kèm theo đáp án và hướng dẫn chi tiết về cách chấm điểm. Câu hỏi mẫu: 1. Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Tháng thứ nhất hai đội sản xuất được 1100 sản phẩm. Sang tháng thứ hai, đội I làm vượt mức 15% và đội II làm vượt mức 20% so với tháng thứ nhất, vì vậy cả hai đội đã làm được 1295 sản phẩm. Hỏi trong tháng thứ nhất mỗi đội làm bao nhiêu sản phẩm? 2. Tính thể tích phần đá chìm trong nước của một cục đá được thả vào cốc thủy tinh hình trụ, biết diện tích đáy của cốc là 16,5cm2 và nước trong cốc dâng thêm 80mm khi đá chìm. 3. Chứng minh các điểm M, N, D, E cùng nằm trên một đường tròn và giải các phần còn lại của bài toán đường tròn và tam giác cho trước. Bộ đề thi này không chỉ giúp các em học sinh ôn tập kiến thức môn Toán mà còn rèn luyện kỹ năng giải quyết vấn đề và tư duy logic. Hy vọng rằng đề thi sẽ mang lại những trải nghiệm thú vị và bổ ích cho mọi người.

Nguồn: sytu.vn

Đọc Sách

Đề KSCL Toán vào 10 THPT năm 2023 trường THCS Nguyễn Đăng Đạo - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán ôn thi vào lớp 10 THPT năm học 2022 – 2023 trường THCS Nguyễn Đăng Đạo, thành phố Bắc Ninh, tỉnh Bắc Ninh; đề thi gồm 40 câu trắc nghiệm (04 điểm – 50 phút) và 04 câu tự luận (06 điểm – 70 phút); kỳ thi được diễn ra vào ngày 15 tháng 02 năm 2023. Trích dẫn Đề KSCL Toán vào 10 THPT năm 2023 trường THCS Nguyễn Đăng Đạo – Bắc Ninh : + Khẳng định nào sau đây đúng? A. Góc nội tiếp là góc có đỉnh trùng với tâm của đường tròn. B. Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh là hai dây của đường tròn. C. Góc nội tiệp là góc có đỉnh nằm trên đường tròn và có cạnh chứa dây của đường tròn. D. Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây của đường tròn. + Một người đang ở trên tầng thượng của một tòa nhà quan sát con đường chạy thẳng đến chân tòa nhà (hình vẽ minh họa phía dưới). Anh ta nhìn thấy một người điều khiển chiếc xe máy đi về phía tòa nhà với phương nhìn tạo với phương nằm ngang một góc bằng 30°. Sau 6 phút, người quan sát vẫn nhìn thấy người điểu khiển chiếc xe máy, nhưng phương nhìn tạo với phương nằm ngang một góc bằng 60°. Hỏi sau bao nhiêu phút nữa thì xe mày sẽ chạy đến chân tòa nhà? Cho biết vận tốc xe máy không đổi. + Bạn Nam mua hai món hàng và phải trả tổng cộng 480000 đồng, trong đó đã tính cả 40000 đồng thuế giá trị gia tăng (viết tắt là thuế VAT). Biết rằng thuế VAT đối với mặt hàng thứ nhất là 10%, thuế VAT đối với mặt hàng thứ hai là 8%. Hỏi bạn Nam đã mua mỗi món hàng với giá là bao nhiêu tiền?
Đề KSCL Toán vào lớp 10 năm 2022 - 2023 phòng GDĐT Thọ Xuân - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán ôn thi tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thọ Xuân, tỉnh Thanh Hoá; kỳ thi được diễn ra vào ngày 02 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề KSCL Toán vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Thọ Xuân – Thanh Hoá : + Cho nửa đường tròn tâm O, bán kính R, đường kính AB, I là điểm cố định thuộc đoạn thẳng OB. Vẽ đường thẳng d vuông góc với AB tại I, d cắt nửa đường tròn (O) tại K. Lấy điểm M bất kỳ thuộc cung nhỏ BK, tia BM cắt đường thẳng d tại điểm C, đoạn thẳng AM cắt đường thẳng d tại điểm N, AC cắt nửa đường tròn (O) tại D. a) Chứng minh tứ giác BMNI là tứ giác nội tiếp b) Chứng minh ba điểm B, N, D thẳng hàng và tính AD.AC + BM.BC theo R c) Gọi O’ là tâm đường tròn ngoại tiếp tam giác ANC. Chứng minh O’ luôn nằm trên một đường thẳng cố định khi M di chuyển trên cung nhỏ KB. + Trong hệ trục tọa độ Oxy, cho parabol (P): y = 2×2 và đường thẳng (d): y = (m + 1)x – m + 3 (m là tham số ) a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm A và B phân biệt với mọi giá trị của m b) Gọi tọa độ điểm A và điểm B là A (x1; y1) và B(x2; y2). Tìm m để 2y1 + 2y2 = (m + 1)x2 + 2 + 8. + Cho 3 số thực dương x, y, z thỏa mãn: 2 2 2 1 1 1 1 x y z. Tìm giá trị nhỏ nhất của biểu thức: 2 2 2 2 2 2 2 2 2 2 2 2 y z z x x y P x y z y z x z x y.
Đề KSCL Toán thi vào lớp 10 năm 2021 - 2022 phòng GDĐT Thạch Thành - Thanh Hóa
Thứ Năm ngày 08 tháng 04 năm 2021, phòng Giáo dục và Đào tạo huyện Thạch Thành, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng môn Toán ôn thi vào lớp 10 THPT năm học 2021 – 2022. Đề KSCL Toán thi vào lớp 10 năm 2021 – 2022 phòng GD&ĐT Thạch Thành – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút.
Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Yên Thành - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Yên Thành, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 phòng GD&ĐT Yên Thành – Nghệ An : + Lớp 9A được giao nhiệm vụ trồng 120 cây xanh được chia đều cho các học sinh. Khi thực hiện trồng cây có 10 học sinh được điều đi làm việc khác nên mỗi học sinh còn lại phải trồng thêm 1 cây nữa mới hết số cây phải trồng. Tính số học sinh của lớp 9A. + Một thùng đựng nước dạng hình trụ có chiều cao 2m và đường kính đáy 1m. Hỏi thùng này đựng đầy thì được bao nhiêu lít nước (cho π = 3,14 và độ dày của thùng không đáng kể). + Cho nửa đường tròn tâm O đường kính ABvà điểm E tùy ý trên nửa đường tròn đó (E khác A, B). Lấy điểm H thuộc đoạn EB (H khác E B). Tia AH cắt nửa đường tròn tại điểm thứ hai là F. Kéo dài tia AE và BF cắt nhau tại I. Đường thẳng IH cắt nửa đường tròn tại P và cắt AB tại K a) Chứng minh tứ giác IEHF nội tiếp được đường tròn. b) Chứng minh AIH ABE và cos PK BK ABP PA PB c) Gọi S là giao điểm của tia BF và tiếp tuyến tại A của nửa đường tròn (O).Khi tứ giác AHIS nội tiếp được đường tròn. Chứng minh EF EK.