Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL học kì 2 (HK2) lớp 9 môn Toán năm 2018 2019 sở GD ĐT Vĩnh Phúc

Nội dung Đề KSCL học kì 2 (HK2) lớp 9 môn Toán năm 2018 2019 sở GD ĐT Vĩnh Phúc Bản PDF - Nội dung bài viết Đề KSCL học kì 2 (HK2) lớp 9 môn Toán năm 2018 - 2019 sở GD ĐT Vĩnh Phúc Đề KSCL học kì 2 (HK2) lớp 9 môn Toán năm 2018 - 2019 sở GD ĐT Vĩnh Phúc Vào thứ Sáu, ngày 10 tháng 05 năm 2019, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc đã tổ chức kỳ thi khảo sát chất lượng cuối học kỳ 2 môn Toán cho học sinh lớp 9 năm học 2018 - 2019. Đề KSCL học kỳ 2 Toán lớp 9 năm 2018 - 2019 của sở GD&ĐT Vĩnh Phúc có mã đề 003 và bao gồm 1 trang. Đề thi được biên soạn theo dạng trắc nghiệm khách quan kết hợp với phần tự luận, tỉ lệ điểm 3:7. Phần trắc nghiệm có 6 câu, phần tự luận có 4 câu và thời gian làm bài thi là 90 phút. Trích dẫn một số câu hỏi từ đề KSCL học kì 2 Toán lớp 9 năm 2018 - 2019 của sở GD&ĐT Vĩnh Phúc: 1. Cho parabol (P): y = x^2 và đường thẳng (d): y = 2x + 3. Yêu cầu vẽ đồ thị của (P) và (d) trên cùng một hệ trục tọa độ. 2. Một người cần đi từ Vĩnh Phúc đến Phủ Lý cách nhau 90km. Vì có việc gấp, người đó cần đến Phủ Lý sớm 45 phút, nên phải tăng vận tốc mỗi giờ 10 km. Hãy tính vận tốc người đó cần đi. 3. Từ một điểm M ở bên ngoài đường tròn (O), vẽ hai tiếp tuyến MA, MB và cát tuyến MCD không đi qua tâm O tới đường tròn (A, B là hai điểm tiếp xúc; C ở giữa M và D, MCD nằm ở nửa mặt phẳng chứa A có cạnh là MO). Gọi I là trung điểm của CD. a) Chứng minh tứ giác MACB và tứ giác MIOB nội tiếp. b) Gọi H là giao điểm của AB và MO. Chứng minh MA^2 = MC.MD và MC.MD = MH.MO. c) Chứng minh AB là phân giác của góc CHD. Với những câu hỏi và yêu cầu phức tạp như trên, đề KSCL học kì 2 Toán lớp 9 năm 2018 - 2019 của sở GD&ĐT Vĩnh Phúc đã đánh giá khả năng giải quyết vấn đề, tư duy logic và kiến thức toán học của học sinh một cách chi tiết và nghiêm túc.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 năm 2020 - 2021 trường THCS Ngô Sĩ Liên - Hà Nội
Thứ Hai ngày 31 tháng 05 năm 2021, trường THCS Ngô Sĩ Liên, quận Hoàn Kiếm, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng (viết tắt: KSCL) môn Toán lớp 9 năm học 2020 – 2021, nhằm giúp các em học sinh lớp 9 rèn luyện để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2021 – 2022 do sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức. Đề khảo sát Toán 9 năm 2020 – 2021 trường THCS Ngô Sĩ Liên – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát Toán 9 năm 2020 – 2021 trường THCS Ngô Sĩ Liên – Hà Nội : + Cho đường tròn (O) đường kính AB, lấy C thuộc đường tròn (O) sao cho AC < CB. Kẻ đường kính CD. Tiếp tuyến tại A và tiếp tuyến C của đường tròn (O) cắt nhau tai E. Tiếp tuyến tại C và tiếp tuyến B của đường tròn (O) cắt nhau tai F. 1) Chứng minh bốn điểm O, A, E, C thuộc một đường tròn. 2) Chứng minh EO // CB. 3) Đoạn thẳng DF cắt đường tròn (O) tại J. Đường thẳng AJ cắt đường thẳng BC tại điểm H và cắt đường thẳng DC tại điểm G. Chứng minh G là trọng tâm của tam giác ABC. + Với a, b, c là độ dài ba cạnh của một tam giác có chu vi bằng 2. Chứng minh rằng: ab bc ca 1. + Cho parabol 2 P y x và đường thẳng 2 d y mx m. a) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt với mọi giá trị của tham số m. b) Gọi giao điểm của (d) và (P) là 𝐴(𝑥𝐴; 𝑦𝐴),𝐵(𝑥𝐵; 𝑦𝐵). Hãy các xác định giá trị của m để yA + yB < -6.
Đề khảo sát chất lượng Toán 9 lần 3 năm 2021 trường THCS Phương Liệt - Hà Nội
  Nhằm chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2021 – 2022 do sở GD&ĐT Hà Nội tổ chức, thứ Bảy ngày 29 tháng 05 năm 2021, trường THCS Phương Liệt, quận Thanh Xuân, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2020 – 2021 lần thứ ba. Đề khảo sát chất lượng Toán 9 lần 3 năm 2021 trường THCS Phương Liệt – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút (không kể thời gian phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát chất lượng Toán 9 lần 3 năm 2021 trường THCS Phương Liệt – Hà Nội : + Cho hàm số y m x 1 3 m 1 có đồ thị là đường thẳng (d). a) Tìm m để đường thẳng (d) đi qua điểm M(1; 4). Với m vừa tìm được, hãy cho biết đường thẳng (d) có song song với đường thẳng y x 1 không? Vì sao? b) Tìm tất cả các giá trị m để đường thẳng (d) tiếp xúc với đường tròn (O; 1) trong đó O là gốc tọa độ. + Cho nửa đường tròn tâm (O), đường kính AB = 2R. Vẽ bán kính OC vuông góc với AB. Lấy điểm K bất kì thuộc cung AC, kẻ KH vuông góc với AB tại H. Tia AC cắt HK tại I, tia BI cắt nửa tròn tại điểm E. 1) Chứng minh tứ giác BHIC nội tiếp. 2) Chứng minh AI.AC = AH. AB và tổng AI.AC + BI.BE không đổi. 3) Chứng minh HE vuông góc với CE và tâm đường tròn ngoại tiếp tam giác CEH nằm trên đường thẳng cố định khi K di động trên cung AC. + Với a, b, c là các số dương thỏa mãn điều kiện abc 3. Tìm giá trị lớn nhất của biểu thức Q a bc b ca c a.
Đề khảo sát Toán 9 tháng 5 năm 2021 trường THCS Ngọc Lâm - Hà Nội
Đề khảo sát Toán 9 tháng 5 năm 2021 trường THCS Ngọc Lâm – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút.
Đề khảo sát Toán 9 năm 2020 - 2021 trường THCS Nguyễn Trãi - Hà Nội
Chủ Nhật ngày 23 tháng 05 năm 2021, trường THCS Nguyễn Trãi, quận Thanh Xuân, thành phố Hà Nội tổ chức kiểm tra khảo sát chất lượng môn Toán lớp 9 năm học 2020 – 2021. Đề khảo sát Toán 9 năm 2020 – 2021 trường THCS Nguyễn Trãi – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề khảo sát Toán 9 năm 2020 – 2021 trường THCS Nguyễn Trãi – Hà Nội : + Một đội sản xuất phải làm 200 sản phẩm trong một thời gian qui định. Trong 4 ngày đầu họ đã thực hiện theo đúng kế hoạch, những ngày còn lại họ đã làm vượt mức mỗi ngày 10 sản phẩm nên đã hoàn thành công việc sớm hơn 2 ngày. Hỏi theo kế hoạch mỗi ngày đội phải làm bao nhiều sản phẩm? + Một quả bóng đá hình cầu có đường kính bằng 24cm. Tính diện tích da dùng để khâu thành quả bóng đó, biết tỉ lệ da sử dụng làm bóng bị hao hụt 3% (hình minh họa). + Từ điểm A ở ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB, AC (B, C là các tiếp điểm) và cát tuyến ADE thuộc nửa mặt phẳng bờ là đường thẳng OA không chứa điểm B của đường tròn (O). Gọi H là giao điểm của OA và BC. 1. Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn. 2. Chứng minh AO vuông góc BC tại H và AH.AO = AD.AE. 3. Đường thẳng đi qua điểm D và song song với đường thẳng BE cắt AB, BC lần lượt tại I, K. Chứng minh tứ giác OHDE nội tiếp và D là trung điểm của IK.