Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2017 - 2018 sở GDĐT Thanh Hóa

Ngày 10 tháng 03 năm 2018, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 khối THCS năm học 2017 – 2018, kỳ thi nhằm tuyển chọn những em học sinh lớp 9 có khả năng học tập môn Toán xuất sắc để tuyên dương và khen thưởng, làm mục tiêu phấn đấu cho học sinh tỉnh nhà, các em được chọn sẽ được tiếp tục bồi dưỡng để tham dự kỳ thi HSG Toán 9 cấp Quốc gia. Đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2017 – 2018 sở GD&ĐT Thanh Hóa với 05 bài toán dạng tự luận, thang điểm bài thi là 20 điểm, thời gian làm bài thi 150 phút, đề thi gồm có 01 trang, có hướng dẫn giải và biểu điểm. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2017 – 2018 sở GD&ĐT Thanh Hóa : + Cho a, b là các số nguyên dương thỏa mãn p = a^2 + b^2 là số nguyên tố và p – 5 chia hết cho 8. Giả sử x, y là các số nguyên thỏa mãn ax^2 – by^2 chia hết cho p. Chứng minh rằng cả hai số x, y chia hết cho p. + Biết phương trình (m – 2)x^2 – 2(m – 1)x + m = 0 có hai nghiệm tương ứng là độ dài hai cạnh góc vuông của một tam giác vuông. Tìm m để độ dài đường cao ứng với cạnh huyền của tam giác vuông đó bằng 2/√5. + Cho tam giác ABC có (O), (I), (Ia) theo thứ tự là các đường tròn ngoại tiếp, đường tròn nội tiếp và đường tròn bàng tiếp đối diện đỉnh A của tam giác với các tâm tương ứng là O, I, Ia. Gọi D là tiếp điểm của (I) với BC, P là điểm chính giữa cung BAC của (O), PIa cắt (O) tại điểm K. Gọi M là giao điểm của PO và BC, N là điểm đối xứng với P qua O. 1. Chứng minh IBIaC là tứ giác nội tiếp. 2. Chứng minh NIa là tiếp tuyến của đường tròn ngoại tiếp tam giác IaMP. 3. Chứng minh DAI = KAIa.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi cấp huyện Toán 9 năm 2022 - 2023 phòng GDĐT Ba Vì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Ba Vì, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 23 tháng 09 năm 2022.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Nha Trang - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Nha Trang, tỉnh Khánh Hòa; kỳ thi được diễn ra vào thứ Sáu ngày 23 tháng 09 năm 2022. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Nha Trang – Khánh Hòa : + Chứng minh rằng nếu n + 1 và 2n + 1 (n thuộc N) đều là số chính phương thì n chia hết cho 24. + Hai đội bóng bàn A và B của hai trường trung học cơ sở thi đấu giao hữu. Biết rằng mỗi đấu thủ của đội A phải lần lượt gặp đấu thủ của đội B một lần và số trận đấu gấp đôi tổng số đấu thủ của hai đội. Tính số đấu thủ của mỗi đội. + Giả sử mỗi điểm trong mặt phẳng được tô bằng một trong hai màu trắng hoặc đen. Chứng minh tồn tại một hình chữ nhật có đỉnh cùng màu.
Đề học sinh giỏi huyện môn Toán năm 2022 - 2023 phòng GDĐT Cam Lâm - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Cam Lâm, tỉnh Khánh Hòa; kỳ thi được diễn ra vào ngày 17 tháng 09 năm 2022. Trích dẫn đề học sinh giỏi huyện môn Toán năm 2022 – 2023 phòng GD&ĐT Cam Lâm – Khánh Hòa : + Một lớp học của trường X có 40 học sinh, trong đó có 30 học sinh thích môn Toán và 20 học sinh thích môn Văn. Hỏi : 1) Có nhiều nhất bao nhiêu học sinh thích cả hai môn Văn và Toán? 2) Có ít nhất bao nhiêu học sinh thích cả hai môn Văn và Toán? 3) Nếu chỉ có 3 học sinh không thích cả môn Văn lẫn môn Toán thì có bao nhiêu học sinh thích cả hai môn Văn lẫn Toán? + Cho tam giác ABC vuông tại A. Từ điểm D trên cạnh huyền BC kẻ DE vuông góc với AB, DF vuông góc với AC. 1) Chứng minh tứ giác AEDF là hình chữ nhật. 2) Chứng minh EA.EB + FA.FC = DB.DC. 3) Giả sử AB = 6cm, AC = 8cm. Xác định vị trí của điểm D để diện tích tứ giác AEDF là lớn nhất. + Năm vận động viên mang số áo là 1; 2; 3; 4; 5 được chia thành hai nhóm. Chứng tỏ rằng ở một trong hai nhóm ta luôn có hai vận động viên mà hiệu các số áo họ mang trùng với một trong các số áo mà người của nhóm đó mang.
Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Đức Thọ - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Đức Thọ, tỉnh Hà Tĩnh; kỳ thi được diễn ra vào thứ Năm ngày 15 tháng 09 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được biên soạn bởi thầy giáo Nguyễn Ngọc Hùng, giáo viên Toán trường THCS Hoàng Xuân Hãn, huyện Đức Thọ, tỉnh Hà Tĩnh). Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Đức Thọ – Hà Tĩnh : + Rút gọn biểu thức A. b) Cho các số thực a, b, c thỏa mãn a2 + b2 = 2. Tính giá trị của biểu thức P. c) Phân tích đa thức x(x + 2)(x2 + 2x + 2) + 1 thành nhân tử. + Cho đa thức f(x) = ax2 + bx + c với a, b, c là các số hữu tỉ. Biết rằng f(0), f(1), f(2) có giá trị nguyên. Chứng minh rằng 2a, 2b có giá trị nguyên. + Các điểm E và F lần lượt là trung điểm của các cạnh AB, AD của hình bình hành ABCD. Các đoạn thẳng CE và BF cắt nhau tại K. Qua điểm D kẻ đường thẳng song song với CE cắt đường thẳng AB tại N. Tia BF cắt DN tại P. a) Chứng minh rằng BE = 1/2.EN và KP = 2BK. b) Chứng minh rằng KF/KP = 3/4. c) Lấy điểm M thuộc đoạn CE sao cho BM song song với KD. Chứng minh rằng diện tích tam giác KFD bằng diện tích tứ giác BKDM.