Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải các dạng toán căn bậc hai, căn bậc ba

Nội dung Phương pháp giải các dạng toán căn bậc hai, căn bậc ba Bản PDF - Nội dung bài viết Tài liệu học phương pháp giải các dạng toán căn bậc hai, căn bậc ba Tài liệu học phương pháp giải các dạng toán căn bậc hai, căn bậc ba Tài liệu này bao gồm 54 trang, tóm tắt những kiến thức quan trọng và cung cấp hướng dẫn cách giải các dạng toán căn bậc hai và căn bậc ba, giúp học sinh lớp 9 dễ dàng tham khảo khi học chương trình Toán lớp 9 phần Đại số chương 1. Trong tài liệu, các bài được chia ra làm các phần sau: Bài 1: Giải các dạng toán liên quan đến căn bậc hai. Bao gồm cách tìm căn bậc hai của một số, so sánh các căn bậc hai, giải phương trình và bất phương trình liên quan đến căn bậc hai. Bài 2: Liên quan đến phép nhân và phép khai phương. Hướng dẫn khai phương một tích, nhân các căn bậc hai, rút gọn biểu thức và giải phương trình. Bài 3: Thảo luận về phép chia và phép khai phương. Bao gồm cách khai phương một thương, chia các căn bậc hai, rút gọn biểu thức và giải phương trình. Bài 4: Hướng dẫn sử dụng bảng căn bậc hai và biến đổi đơn giản biểu thức chứa căn thức bậc hai. Bài 5: Rút gọn biểu thức chứa căn thức bậc hai, bao gồm cách rút gọn biểu thức có các phép cộng, trừ, nhân, chia căn thức dưới dạng phân thức đại số. Bài 6: Hướng dẫn tìm căn bậc ba của một số, so sánh các căn bậc ba và giải phương trình liên quan đến căn bậc ba. Với cách trình bày cụ thể và dễ hiểu, tài liệu này sẽ giúp học sinh khái quát kiến thức và tự tin trong việc giải các dạng toán liên quan đến căn bậc hai và căn bậc ba trong chương trình Toán lớp 9.

Nguồn: sytu.vn

Đọc Sách

Tài liệu Toán 9 chủ đề một số hệ thức về cạnh và đường cao trong tam giác vuông
Tài liệu gồm 43 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề một số hệ thức về cạnh và đường cao trong tam giác vuông trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. Khi giải các bài toán liên quan đến cạnh và đường cao trong tam giác vuông, ngoài việc nắm vững các kiến thức về định lý Talet, về các trường hợp đồng dạng của tam giác, cần phải nắm vững các kiến thức sau: Tam giác ABC vuông tại A, đường cao AH, ta có: 1) Hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền. Định lí 1: Trong một tam giác vuông, bình phương mỗi cạnh góc vuông bằng tích của cạnh huyền và hình chiếu của cạnh góc vuông đó trên cạnh huyền. 2) Hệ thức liên qua tới đường cao. Định lí 2: Trong một tam giác vuông, bình phương đường cao ứng với cạnh huyền bằng tích hai hình chiếu của hai cạnh góc vuông trên cạnh huyền. Định lí 3: Trong một tam giác vuông, tích hai cạnh góc vuông bằng tích của cạnh huyền và đường cao tương ứng. Định lí 4: Trong một tam giác vuông, nghịch đảo của bình phương đường cao ứng với cạnh huyền bằng tổng các nghịch đảo của bình phương hai cạnh góc vuông. B. Bài tập và các dạng toán. Dạng 1 : Tính độ dài các đoạn thẳng trong tam giác vuông. Cách giải: Bước 1: Xác định vai trò của đoạn thẳng đã biết và đoạn thẳng cần tính trong tam giác vuông. Cụ thể, xác định xem đoạn thẳng đó là: + Là cạnh góc vuông. + Là đường cao. + Là cạnh huyền. + Là hình chiếu. Bước 2: Từ đó lựa chọn công thức tính phù hợp (trong 6 công thức ở phần lý thuyết). Dạng 2 : Tính chu vi, diện tích các hình. Cách giải: Bước 1: Hình cần tính chu vi, diện tích là hình gì? Bước 2: Viết công thức tính chu vi, diện tích của hình đó. Bước 3: Tính độ dài các đoạn thẳng chưa biết (đã học ở dạng 1). Bước 4: Thay số và tính chu vi, diệc tích. Kết luận. Dạng 3 : Chứng minh các hệ thức liên quan đến tam giác vuông. Cách giải: Sử dụng các hệ thức về cạnh và đường cao một cách hợp lý theo 3 bước: Bước 1: Chọn các tam giác vuông thích hợp chứa các đoạn thẳng có trong hệ thức. Bước 2: Tính các đoạn thẳng đó nhờ hệ thức về cạnh và đường cao. Bước 3: Liên kết các giá trị trên để rút ra hệ thức cần chứng minh. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề một số hệ thức về cạnh và góc trong tam giác vuông
Tài liệu gồm 21 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề một số hệ thức về cạnh và góc trong tam giác vuông trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. B. Bài tập và các dạng toán. Dạng 1 : Giải tam giác vuông. Cách giải: Để giải tam giác vuông ta dùng hệ thức giữa cạnh và các góc trong tam giác vuông. – Chú ý: Các bài toán về giải tam giác vuông bao gồm: + Giải tam giác vuông khi biết độ dài 1 cạnh và số đo 1 góc nhọn. + Giải tam giác vuông khi biết độ dài 2 cạnh. Dạng 2 : Tính cạnh và góc của tam giác. Cách giải: Làm xuất hiện tam giác vuông để áp dụng các hệ thức trên bằng cách kẻ thêm đường cao. Dạng 3 : Toán ứng dụng thực tế. Cách giải: Dùng hệ thức giữa cạnh và góc trong tam giác vuông để giải quyết tình huống trong thực tế. Dạng 4 : Toán tổng hợp. Cách giải: Vận dụng linh hoạt một số hệ thức giữa cạnh và góc trong một tam giác vuông để giải toán. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề tỉ số lượng giác của góc nhọn
Tài liệu gồm 15 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề tỉ số lượng giác của góc nhọn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định nghĩa. 2. Tỉ số lượng giác của hai góc phụ nhau. 3. Một số hệ thức liên hệ giữa các tỉ số lượng giác. 4. Bảng tỷ số lượng giác của một số góc đặc biệt. B. Bài tập và các dạng toán. Dạng toán: Tính tỉ số lượng giác của góc nhọn, tính cạnh, tính góc. Cách giải: Sử dụng các kiến thức trong phần tóm tắt lý thuyết. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai
Tài liệu gồm 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Đưa thừa số ra ngoài dấu căn. 2. Đưa thừa số vào trong dấu căn. 3. Khử mẫu của biểu thức lấy căn. 4. Trục căn thức ở mẫu. B. Bài tập và các dạng toán. Dạng 1: Đưa thừa số ra ngoài dấu căn hoặc vào trong dấu căn. Dạng 2: So sánh các căn bậc hai. Dạng 3: Rút gọn biểu thức chứa căn bậc hai. Dạng 4: Khử mẫu của biểu thức dưới dấu căn bậc hai. Dạng 5: Trục căn thức ở mẫu. Dạng 6: Sử dụng các phép biến đổi căn thức bậc hai để giải phương trình. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.